959 resultados para Vehicle Structural Integrity.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Corrosion is a common phenomenon and critical aspects of steel structural application. It affects the daily design, inspection and maintenance in structural engineering, especially for the heavy and complex industrial applications, where the steel structures are subjected to hash corrosive environments in combination of high working stress condition and often in open field and/or under high temperature production environments. In the paper, it presents the actual engineering application of advanced finite element methods in the predication of the structural integrity and robustness at a designed service life for the furnaces of alumina production, which was operated in the high temperature, corrosive environments and rotating with high working stress condition.
Resumo:
This paper presents a multi-criteria based approach for nondestructive diagnostic structural integrity assessment of a decommissioned flatbed rail wagon (FBRW) used for road bridge superstructure rehabilitation and replacement applications. First, full-scale vibration and static test data sets are employed in a FE model of the FBRW to obtain the best ‘initial’ estimate of the model parameters. Second, the ‘final’ model parameters are predicted using sensitivity-based perturbation analysis without significant difficulties encountered. Consequently, the updated FBRW model is validated using the independent sets of full-scale laboratory static test data. Finally, the updated and validated FE model of the FBRW is used for structural integrity assessment of a single lane FBRW bridge subjected to the Australian bridge design traffic load.
Resumo:
Background: We highlight an unrecognized physiological role for the Greek key motif, an evolutionarily conserved super-secondary structural topology of the beta gamma-crystallins. These proteins constitute the bulk of the human eye lens, packed at very high concentrations in a compact, globular, short-range order, generating transparency. Congenital cataract (affecting 400,000 newborns yearly worldwide), associated with 54 mutations in beta gamma-crystallins, occurs in two major phenotypes nuclear cataract, which blocks the central visual axis, hampering the development of the growing eye and demanding earliest intervention, and the milder peripheral progressive cataract where surgery can wait. In order to understand this phenotypic dichotomy at the molecular level, we have studied the structural and aggregation features of representative mutations. Methods: Wild type and several representative mutant proteins were cloned, expressed and purified and their secondary and tertiary structural details, as well as structural stability, were compared in solution, using spectroscopy. Their tendencies to aggregate in vitro and in cellulo were also compared. In addition, we analyzed their structural differences by molecular modeling in silico. Results: Based on their properties, mutants are seen to fall into two classes. Mutants A36P, L45PL54P, R140X, and G165fs display lowered solubility and structural stability, expose several buried residues to the surface, aggregate in vitro and in cellulo, and disturb/distort the Greek key motif. And they are associated with nuclear cataract. In contrast, mutants P24T and R77S, associated with peripheral cataract, behave quite similar to the wild type molecule, and do not affect the Greek key topology. Conclusion: When a mutation distorts even one of the four Greek key motifs, the protein readily self-aggregates and precipitates, consistent with the phenotype of nuclear cataract, while mutations not affecting the motif display `native state aggregation', leading to peripheral cataract, thus offering a protein structural rationale for the cataract phenotypic dichotomy ``distort motif, lose central vision''.
Resumo:
After stroke, white matter integrity can be affected both locally and distally to the primary lesion location. It has been shown that tract disruption in mirror's regions of the contralateral hemisphere is associated with degree of functional impairment. Fourteen patients suffering right hemispheric focal stroke (S) and eighteen healthy controls (HC) underwent Diffusion Weighted Imaging (DWI) and neuropsychological assessment. The stroke patient group was divided into poor (SP; n = 8) and good (SG; n = 6) cognitive recovery groups according to their cognitive improvement from the acute phase (72 hours after stroke) to the subacute phase (3 months post-stroke). Whole-brain DWI data analysis was performed by computing Diffusion Tensor Imaging (DTI) followed by Tract Based Spatial Statistics (TBSS). Assessment of effects was obtained computing the correlation of the projections on TBSS skeleton of Fractional Anisotropy (FA) and Radial Diffusivity (RD) with cognitive test results. Significant decrease of FA was found only in right brain anatomical areas for the S group when compared to the HC group. Analyzed separately, stroke patients with poor cognitive recovery showed additional significant FA decrease in several left hemisphere regions; whereas SG patients showed significant decrease only in the left genu of corpus callosum when compared to the HC. For the SG group, whole brain analysis revealed significant correlation between the performance in the Semantic Fluency test and the FA in the right hemisphere as well as between the performance in the Grooved Pegboard Test (GPT) and theTrail Making Test-part A and the FA in the left hemisphere. For the SP group, correlation analysis revealed significant correlation between the performance in the GPT and the FA in the right hemisphere. Palabras clave
Resumo:
After stroke, white matter integrity can be affected both locally and distally to the primary lesion location. It has been shown that tract disruption in mirror's regions of the contralateral hemisphere is associated with degree of functional impairment. Fourteen patients suffering right hemispheric focal stroke (S) and eighteen healthy controls (HC) underwent Diffusion Weighted Imaging (DWI) and neuropsychological assessment. The stroke patient group was divided into poor (SP; n = 8) and good (SG; n = 6) cognitive recovery groups according to their cognitive improvement from the acute phase (72 hours after stroke) to the subacute phase (3 months post-stroke). Whole-brain DWI data analysis was performed by computing Diffusion Tensor Imaging (DTI) followed by Tract Based Spatial Statistics (TBSS). Assessment of effects was obtained computing the correlation of the projections on TBSS skeleton of Fractional Anisotropy (FA) and Radial Diffusivity (RD) with cognitive test results. Significant decrease of FA was found only in right brain anatomical areas for the S group when compared to the HC group. Analyzed separately, stroke patients with poor cognitive recovery showed additional significant FA decrease in several left hemisphere regions; whereas SG patients showed significant decrease only in the left genu of corpus callosum when compared to the HC. For the SG group, whole brain analysis revealed significant correlation between the performance in the Semantic Fluency test and the FA in the right hemisphere as well as between the performance in the Grooved Pegboard Test (GPT) and theTrail Making Test-part A and the FA in the left hemisphere. For the SP group, correlation analysis revealed significant correlation between the performance in the GPT and the FA in the right hemisphere.
Resumo:
Structures critical to the flight-safety are commonly submitted to several maintenance repairs at the welded joints in order to prolong the in-service life of aircrafts. The aim of this study is to analyze the effects of Tungsten Inert Gas (TIG) welding repair on the structural integrity of the AISI 4130 aeronautical steel by means of experimental fatigue crack growth tests in base-material, heat-affected zone (HAZ) and weld metal. The tests were performed on hot-rolled steel plate specimens, 0.89 mm thick, with load ratio R = 0.1, constant amplitude, at 10 Hz frequency and room temperature. Increase of the fracture resistance was observed in the weld metal but decreasing in the HAZ after repair. The results were associated to microhardness and microstructural changes with the welding sequence. (C) 2010 Published by Elsevier Ltd.
Resumo:
This paper presents a non-model based technique to detect, locate, and characterize structural damage by combining the impedance-based structural health monitoring technique with an artificial neural network. The impedance-based structural health monitoring technique, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations (typically>30 kHz), this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors. In order to quantitatively assess the state of structures, two sets of artificial neural networks, which utilize measured electrical impedance signals for input patterns, were developed. By employing high frequency ranges and by incorporating neural network features, this technique is able to detect the damage in its early stage and to estimate the nature of damage without prior knowledge of the model of structures. The paper concludes with an experimental example, an investigation on a massive quarter scale model of a steel bridge section, in order to verify the performance of this proposed methodology.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents the application of artificial immune systems for analysis of the structural integrity of a building. Inspired by a biological process, it uses the negative selection algorithm to perform the identification and characterization of structural failure. This paper presents the application of artificial immune systems for analysis of the structural integrity of a building. Inspired by a biological process, it uses the negative selection algorithm to perform the identification and characterization of structural failure. This methodology can assist professionals in the inspection of mechanical and civil structures, to identify and characterize flaws, in order to perform preventative maintenance to ensure the integrity of the structure and decision-making. In order to evaluate the methodology was made modeling a two-story building and several situations were simulated (base-line condition and improper conditions), yielding a database of signs, which were used as input data for the negative selection algorithm. The results obtained by the present method efficiency, robustness and accuracy.
Resumo:
This paper presents the application of artificial neural networks in the analysis of the structural integrity of a building. The main objective is to apply an artificial neural network based on adaptive resonance theory, called ARTMAP-Fuzzy neural network and apply it to the identification and characterization of structural failure. This methodology can help professionals in the inspection of structures, to identify and characterize flaws in order to conduct preventative maintenance to ensure the integrity of the structure and decision-making. In order to validate the methodology was modeled a building of two walk, and from this model were simulated various situations (base-line condition and improper conditions), resulting in a database of signs, which were used as input data for ARTMAP-Fuzzy network. The results show efficiency, robustness and accuracy.