878 resultados para Urban Informatics, Sustainability, Energy Monitoring, Interaction Design, Visualisation
Resumo:
Building energy meter network, based on per-appliance monitoring system, willbe an important part of the Advanced Metering Infrastructure. Two key issues exist for designing such networks. One is the network structure to be used. The other is the implementation of the network structure on a large amount of small low power devices, and the maintenance of high quality communication when the devices have electric connection with high voltage AC line. The recent advancement of low-power wireless communication makes itself the right candidate for house and building energy network. Among all kinds of wireless solutions, the low speed but highly reliable 802.15.4 radio has been chosen in this design. While many network-layer solutions have been provided on top of 802.15.4, an IPv6 based method is used in this design. 6LOWPAN is the particular protocol which adapts IP on low power personal network radio. In order to extend the network into building area without, a specific network layer routing mechanism-RPL, is included in this design. The fundamental unit of the building energy monitoring system is a smart wall plug. It is consisted of an electricity energy meter, a RF communication module and a low power CPU. The real challenge for designing such a device is its network firmware. In this design, IPv6 is implemented through Contiki operation system. Customize hardware driver and meter application program have been developed on top of the Contiki OS. Some experiments have been done, in order to prove the network ability of this system.
Resumo:
Thesis to obtain the Master Degree in Electronics and Telecommunications Engineering
Resumo:
Locating new wind farms is of crucial importance for energy policies of the next decade. To select the new location, an accurate picture of the wind fields is necessary. However, characterizing wind fields is a difficult task, since the phenomenon is highly nonlinear and related to complex topographical features. In this paper, we propose both a nonparametric model to estimate wind speed at different time instants and a procedure to discover underrepresented topographic conditions, where new measuring stations could be added. Compared to space filling techniques, this last approach privileges optimization of the output space, thus locating new potential measuring sites through the uncertainty of the model itself.
Resumo:
In this thesis a control system for an intelligent low voltage energy grid is presented, focusing on the control system created by using a multi-agent approach which makes it versatile and easy to expand according to the future needs. The control system is capable of forecasting the future energy consumption and decisions making on its own without human interaction when countering problems. The control system is a part of the St. Petersburg State Polytechnic University’s smart grid project that aims to create a smart grid for the university’s own use. The concept of the smart grid is interesting also for the consumers as it brings new possibilities to control own energy consumption and to save money. Smart grids makes it possible to monitor the energy consumption in real-time and to change own habits to save money. The intelligent grid also brings possibilities to integrate the renewable energy sources to the global or the local energy production much better than the current systems. Consumers can also sell their extra power to the global grid if they want.
Resumo:
This chapter covers the basic concepts of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass. In environments with high seasonal peak temperatures and/or humidity (e.g. cities in temperate regions experiencing the Urban Heat Island effect), wholly passive measures may need to be supplemented with low and zero carbon technologies (LZCs). The chapter also includes three case studies: one residential, one demonstrational and one academic facility (that includes an innovative passive downdraught cooling (PDC) strategy) to illustrate a selection of passive measures.
Resumo:
The physics of plasmas encompasses basic problems from the universe and has assured us of promises in diverse applications to be implemented in a wider range of scientific and engineering domains, linked to most of the evolved and evolving fundamental problems. Substantial part of this domain could be described by R–D mechanisms involving two or more species (reaction–diffusion mechanisms). These could further account for the simultaneous non-linear effects of heating, diffusion and other related losses. We mention here that in laboratory scale experiments, a suitable combination of these processes is of vital importance and very much decisive to investigate and compute the net behaviour of plasmas under consideration. Plasmas are being used in the revolution of information processing, so we considered in this technical note a simple framework to discuss and pave the way for better formalisms and Informatics, dealing with diverse domains of science and technologies. The challenging and fascinating aspects of plasma physics is that it requires a great deal of insight in formulating the relevant design problems, which in turn require ingenuity and flexibility in choosing a particular set of mathematical (and/or experimental) tools to implement them.
Resumo:
The paradigm of ubiquitous computing has become a reference for the design of Smart Spaces. Current trends in Ambient Intelligence are increasingly related to the scope of Internet of Things. This paradigm has the potential to support cost-effective solutions in the fields of telecare, e-health and Ambient Assisted Living. Nevertheless, ubiquitous computing does not provide end users with a role for proactive interactions with the environment. Thus, the deployment of smart health care services at a private space like the home is still unsolved. This PhD dissertation aims to define a person-environment interaction model to foster acceptability and users confidence in private spaces by applying the concept of user-centred security and the human performance model of seven stages of action.
Resumo:
Despite the economy, the green building industry continues to grow and drive the demand for environmentally conscious, highly skilled professionals (USGBC 2009). LEED Accredited Professionals (APs) have the knowledge and skills to meet such demand; however, information is limited regarding LEED APs or their motivations and expectations toward prospective employers. The author surveyed a sample of LEED Accredited architects and found a combination of job and personal factors motivated them to attain accreditation. LEED APs value both a competitive salary and commitment to sustainability in prospective employers. To attract, retain, and utilize LEED APs, executives in this industry must reexamine corporate culture, their willingness to pay for credentialing, and the alignment of their reputation with the desires of potential applicants.
Resumo:
"ILENR/RE-AQ-89/05."
Resumo:
Urban areas such as megacities (those with populations greater than 10 million) are hotspots of global water use and thus face intense water management challenges. Urban areas are influenced by local interactions between human and natural systems and interact with distant systems through flows of water, food, energy, people, information, and capital. However, analyses of water sustainability and the management of water flows in urban areas are often fragmented. There is a strong need to apply integrated frameworks to systematically analyze urban water dynamics and factors that influence these dynamics. We apply the framework of telecoupling (socioeconomic and environmental interactions over distances) to analyze urban water issues, using Beijing as a demonstration megacity. Beijing exemplifies the global water sustainability challenge for urban settings. Like many other cities, Beijing has experienced drastic reductions in quantity and quality of both surface water and groundwater over the past several decades; it relies on the import of real and virtual water from sending systems to meet its demand for clean water, and releases polluted water to other systems (spillover systems). The integrative framework we present demonstrates the importance of considering socioeconomic and environmental interactions across telecoupled human and natural systems, which include not only Beijing (the water-receiving system) but also water-sending systems and spillover systems. This framework helps integrate important components of local and distant human–nature interactions and incorporates a wide range of local couplings and telecouplings that affect water dynamics, which in turn generate significant socioeconomic and environmental consequences, including feedback effects. The application of the framework to Beijing reveals many research gaps and management needs. We also provide a foundation to apply the telecoupling framework to better understand and manage water sustainability in other cities around the world.
Resumo:
We propose a field theory model for dark energy and dark matter in interaction. Comparing the classical solutions of the field equations with the observations of the CMB shift parameter, baryonic acoustic oscillations, lookback time, and the Gold supernovae sample, we observe a possible interaction between dark sectors with energy decay from dark energy into dark matter. The observed interaction provides an alleviation to the coincidence problem.
Resumo:
This paper presents the notion of Context-based Activity Design (CoBAD) that represents context with its dynamic changes and normative activities in an interactive system design. The development of CoBAD requires an appropriate context ontology model and inference mechanisms. The incorporation of norms and information field theory into Context State Transition Model, and the implementation of new conflict resolution strategies based on the specific situation are discussed. A demonstration of CoBAD using a human agent scenario in a smart home is also presented. Finally, a method of treating conflicting norms in multiple information fields is proposed.