995 resultados para Universal generating function


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We obtain the exact nonequilibrium work generating function (NEWGF) for a small system consisting of a massive Brownian particle connected to internal and external springs. The external work is provided to the system for a finite-time interval. The Jarzynski equality, obtained in this case directly from the NEWGF, is shown to be valid for the present model, in an exact way regardless of the rate of external work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some methods have been developed to calculate the su(q)(2) Clebsch-Gordan coefficients (CGC). Here we develop a method based on the calculation of Clebsch-Gordan generating functions through the use of 'quantum algebraic' coherent states. Calculating the su(q)(2) CGC by means of this generating function is an easy and straightforward task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A group-theoretic method of obtaining more general class of generating functions from a given class of partial quasi-bilateral generating functions involving Hermite, Laguerre and Gegenbaur polynomials are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 33C45.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 33C10, 33-02, 60K25

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using tools of the theory of orthogonal polynomials we obtain the generating function of the generalized Fibonacci sequence established by Petronilho for a sequence of real or complex numbers {Qn} defined by Q0 = 0, Q1 = 1, Qm = ajQm−1 + bjQm−2, m ≡ j (mod k), where k ≥ 3 is a fixed integer, and a0, a1, . . . , ak−1, b0, b1, . . . , bk−1 are 2k given real or complex numbers, with bj #0 for 0 ≤ j ≤ k−1. For this sequence some convergence proprieties are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is a crucial task to evaluate the reliability of manufacturing process in product development process. Process reliability is a measurement of production ability of reconfigurable manufacturing system (RMS), which serves as an integrated performance indicator of the production process under specified technical constraints, including time, cost and quality. An integration framework of manufacturing process reliability evaluation is presented together with product development process. A mathematical model and algorithm based on universal generating function (UGF) is developed for calculating the reliability of manufacturing process with respect to task intensity and process capacity, which are both independent random variables. The rework strategies of RMS are analyzed under different task intensity based on process reliability is presented, and the optimization of rework strategies based on process reliability is discussed afterwards.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thermal dependence of the zero-bias conductance for the single electron transistor is the target of two independent renormalization-group approaches, both based on the spin-degenerate Anderson impurity model. The first approach, an analytical derivation, maps the Kondo-regime conductance onto the universal conductance function for the particle-hole symmetric model. Linear, the mapping is parametrized by the Kondo temperature and the charge in the Kondo cloud. The second approach, a numerical renormalization-group computation of the conductance as a function the temperature and applied gate voltages offers a comprehensive view of zero-bias charge transport through the device. The first approach is exact in the Kondo regime; the second, essentially exact throughout the parametric space of the model. For illustrative purposes, conductance curves resulting from the two approaches are compared.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new expression for the characteristic function of log-spot in Heston model is presented. This expression more clearly exhibits its properties as an analytic characteristic function and allows us to compute the exact domain of the moment generating function. This result is then applied to the volatility smile at extreme strikes and to the control of the moments of spot. We also give a factorization of the moment generating function as product of Bessel type factors, and an approximating sequence to the law of log-spot is deduced.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this paper is to give an explicit formula for the num- bers of abelian extensions of a p-adic number field and to study the generating function of these numbers. More precisely, we give the number of abelian ex- tensions with given degree and ramification index, and the number of abelian extensions with given degree of any local field of characteristic zero. Moreover, we give a concrete expression of a generating function for these last numbers

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thermal dependence of the zero-bias conductance for the single electron transistor is the target of two independent renormalization-group approaches, both based on the spin-degenerate Anderson impurity model. The first approach, an analytical derivation, maps the Kondo-regime conductance onto the universal conductance function for the particle-hole symmetric model. Linear, the mapping is parametrized by the Kondo temperature and the charge in the Kondo cloud. The second approach, a numerical renormalization-group computation of the conductance as a function the temperature and applied gate voltages offers a comprehensive view of zero-bias charge transport through the device. The first approach is exact in the Kondo regime; the second, essentially exact throughout the parametric space of the model. For illustrative purposes, conductance curves resulting from the two approaches are compared.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To every partially ordered set (poset), one can associate a generating function, known as the P-partition generating function. We find necessary conditions and sufficient conditions for two posets to have the same P-partition generating function. We define the notion of a jump sequence for a labeled poset and show that having equal jumpsequences is a necessary condition for generating function equality. We also develop multiple ways of modifying posets that preserve generating function equality. Finally, we are able to give a complete classification of equalities among partially ordered setswith exactly two linear extensions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A standard treatment of aspects of Legendre polynomials is treated here, including the dipole moment expansion, generating functions, etc..

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone centuries without a solution: why is the familiar cannonball stack the most efficient arrangement possible? Here we discuss the solution that Hales found in 1998. Almost every part of the 282-page proof relies on long computer verifications. Random matrix theory was developed by physicists to describe the spectra of complex nuclei. In particular, the statistical fluctuations of the eigenvalues (“the energy levels”) follow certain universal laws based on symmetry types. We describe these and then discuss the remarkable appearance of these laws for zeros of the Riemann zeta function (which is the generating function for prime numbers and is the last special function from the last century that is not understood today.) Explaining this phenomenon is a central problem. These topics are distinct, so we present them separately with their own introductory remarks.