912 resultados para Ultrasonic non-destructive testing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Piezoelectric array transducers applications are becoming usual in the ultrasonic non-destructive testing area. However, the number of elements can increase the system complexity, due to the necessity of multichannel circuitry and to the large amount of data to be processed. Synthetic aperture techniques, where one or few transmission and reception channels are necessary, and the data are post-processed, can be used to reduce the system complexity. Another possibility is to use sparse arrays instead of a full-populated array. In sparse arrays, there is a smaller number of elements and the interelement spacing is larger than half wavelength. In this work, results of ultrasonic inspection of an aluminum plate with artificial defects using guided acoustic waves and sparse arrays are presented. Synthetic aperture techniques are used to obtain a set of images that are then processed with an image compounding technique, which was previously evaluated only with full-populated arrays, in order to increase the resolution and contrast of the images. The results with sparse arrays are equivalent to the ones obtained with full-populated arrays in terms of resolution. Although there is an 8 dB contrast reduction when using sparse arrays, defect detection is preserved and there is the advantage of a reduction in the number of transducer elements and data volume. © 2013 Brazilian Society for Automatics - SBA.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several Lamb wave modes can be coupled to a particular structure, depending on its geometry and transducer used to generate the guided waves. Each Lamb mode interacts in a particular form with different types of defects, like notches, delamination, surface defects, resulting in different information which can be used to improve damage detection and characterization. An image compounding technique that uses the information obtained from different propagation modes of Lamb waves for non-destructive testing of plate-like structures is proposed. A linear array consisting of 16 piezoelectric elements is attached to a 1 mm thickness aluminum plate, coupling the fundamental A0 and S0 modes at the frequencies of 100 kHz and 360 kHz, respectively. For each mode two images are obtained from amplitude and phase information: one image using the Total Focusing Method (TFM) and one phase image obtained from the Sign Coherence Factor (SCF). Each TFM image is multiplied by the SCF image of the respective mode to improve contrast and reduce side and grating lobes effects. The high dispersive characteristic of the A0 mode is compensated for adequate defect detection. The information in the SCF images is used to select one of the TFM mode images, at each pixel, to obtain the compounded image. As a result, dead zone is reduced, resolution and contrast are improved, enhancing damage detection when compared to the use of only one mode. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of non-destructive testing (NDT) of materials and structures is of immense importance in engineering and medicine. Several NDT methods including electromagnetic (EM)-based e.g. X-ray and Infrared; ultrasound; and S-waves have been proposed for medical applications. This paper evaluates the viability of near infrared (NIR) spectroscopy, an EM method for rapid non-destructive evaluation of articular cartilage. Specifically, we tested the hypothesis that there is a correlation between the NIR spectrum and the physical and mechanical characteristics of articular cartilage such as thickness, stress and stiffness. Intact, visually normal cartilage-on-bone plugs from 2-3yr old bovine patellae were exposed to NIR light from a diffuse reflectance fibre-optic probe and tested mechanically to obtain their thickness, stress, and stiffness. Multivariate statistical analysis-based predictive models relating articular cartilage NIR spectra to these characterising parameters were developed. Our results show that there is a varying degree of correlation between the different parameters and the NIR spectra of the samples with R2 varying between 65 and 93%. We therefore conclude that NIR can be used to determine, nondestructively, the physical and functional characteristics of articular cartilage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants (BFRs) once extensively used in the plastics of a wide range of consumer products. The listing of certain congeners that are constituents of commercial PBDE mixtures (including c-octaBDE) in the Stockholm Convention and tightening regulation of many other BFRs in recent years have created the need for a rapid and effective method of identifying BFR-containing plastics. A three-tiered testing strategy comparing results from non-destructive testing (X-ray fluorescence (XRF)) (n = 1714), a surface wipe test (n = 137) and destructive chemical analysis (n = 48) was undertaken to systematically identify BFRs in a wide range of consumer products. XRF rapidly identified bromine in 92% of products later confirmed to contain BFRs. Surface wipes of products identified tetrabromobisphenol A (TBBPA), c-octaBDE congeners and BDE-209 with relatively high accuracy (> 75%) when confirmed by destructive chemical analysis. A relationship between the amounts of BFRs detected in surface wipes and subsequent destructive testing shows promise in predicting not only the types of BFRs present but also estimating the concentrations present. Information about the types of products that may contain persistent BFRs will assist regulators in implementing policies to further reduce the occurrence of these chemicals in consumer products.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A full-scale seven-storey in-situ advanced reinforced concrete building frame was constructed in the Building Research Establishment's Cardington laboratory encompassing a range of different concrete mixes and construction techniques. This provided an opportunity to use in-situ non-destructive test methods, namely Lok and CAPO tests, on a systematic basis during the construction of the building. They were used in conjunction with both standard and temperature-matched cube specimens to assess their practicality and their individual capabilities under field conditions. Results have been analysed and presented to enable comparisons of the performance of the individual test methods employed.