804 resultados para UNIAXIAL DEFORMATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of TPU nanocomposites were prepared by incorporating organically modified layered silicates with controlled particle size. To our knowledge, this is the first study into the effects of layered silicate diameter in polymer nanocomposites utilizing the same mineral for each size fraction. The tensile properties of these materials were found to be highly dependent upon the size of the layered silicates. A decrease in disk diameter was associated with a sharp upturn in the stress-strain curve and a pronounced increase in tensile strength. Results from SAXS/SANS experiments showed that the layered silicates did not affect the bulk TPU microphase structure and the morphological response of the host TPU to deformation or promote/hinder strain-induced soft segment crystallization. The improved tensile properties of the nanocomposites containing the smaller nanofillers resulted from the layered silicates aligning in the direction of strain and interacting with the TPU sequences via secondary bonding. This phenomenon contributes predominantly above 400% strain once the microdomain architecture has largely been disassembled. Large tactoids that are unable to align in the strain direction lead to concentrated tensile stresses between the polymer and filler, instead of desirable shear stresses, resulting in void formation and reduced tensile properties. In severe cases, such as that observed for the composite containing the largest silicate, these voids manifest visually as stress whitening.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In-plane deformation of foams was studied experimentally by subjecting bidisperse foams to cycles of traction and compression at a prescribed rate. Each foam contained bubbles of two sizes with given area ratio and one of three initial arrangements: sorted perpendicular to the axis of deformation (iso-strain), sorted parallel to the axis of deformation (iso-stress), or randomly mixed. Image analysis was used to measure the characteristics of the foams, including the number of edges separating small from large bubbles N-sl, the perimeter (surface energy), the distribution of the number of sides of the bubbles, and the topological disorder mu(2)(N). Foams that were initially mixed were found to remain mixed after the deformation. The response of sorted foams, however, depended on the initial geometry, including the area fraction of small bubbles and the total number of bubbles. For a given experiment we found that (i) the perimeter of a sorted foam varied little; (ii) each foam tended towards a mixed state, measured through the saturation of N-sl; and (iii) the topological disorder mu(2)(N) increased up to an "equilibrium" value. The results of different experiments showed that (i) the change in disorder, Delta mu(2)(N), decreased with the area fraction of small bubbles under iso-strain, but was independent of it under iso-stress; and (ii) Delta mu(2)(N) increased with Delta N-sl under iso-strain, but was again independent of it under iso-stress. We offer explanations for these effects in terms of elementary topological processes induced by the deformations that occur at the bubble scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis is studied the influence of uniaxial deformation of GaAs/AlGaAs quantum well structures to photoluminescence. Uniaxial deformation was applied along [110] and polarization ratio of photoluminescence at T = 77 K and 300 K was measured. Also the physical origin of photoluminescence lines in spectrum was determined and the energy band splitting value between states of heavy and light holes was estimated. It was found that the dependencies of polarization ratio on uniaxial deformation for bulk GaAs and GaAs/AlGaAs are different. Two observed lines in photoluminescence spectrum are induced by free electron recombination to energy sublevels of valence band corresponding to heavy and light holes. Those sublevels are splited due to the combination of size quantization and external pressure. The quantum splitting energy value was estimated. Also was shown a method, which allows to determine the energy splitting value of sublevels at room temperature and at comparatively low uniaxial deformation, when the other method for determining of the splitting becomes impossible.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Because of their remarkable mechanical properties, nanocrystalline metals have been the focus of much research in recent years. Refining their grain size to the nanometer range (<100 nm) effectively reduces their dislocation mobility, thus achieving very high yield strength and surface hardness—as predicted by the Hall–Petch relation—as well as higher strain-rate sensitivity. Recent works have additionally suggested that nanocrystalline metals exhibit an even higher compressive strength under shock loading. However, the increase in strength of these materials is generally accompanied by an important reduction in ductility. As an alternative, efforts have been focused on ultrafine crystals, i.e. polycrystals with a grain size in the range of 500 nm to 1 μm, in which “growth twins” (twins introduced inside the grain before deformation) act as barriers against dislocation movement, thus increasing the strength in a similar way as nanocrystals but without significant loss of ductility. Due to their outstanding mechanical properties, both nanocrystalline and nanotwinned ultrafine crystalline steels appear to be relevant candidates for ballistic protection. The aim of the present work is to compare their ballistic performance against coarse-grained steel, as well as to identify the effect of the hybridization with a carbon fiber–epoxy composite layer. Hybridization is proposed as a way to improve the nanocrystalline brittle properties in a similar way as is done with ceramics in other protection systems. The experimental campaign is finally complemented by numerical simulations to help identify some of the intrinsic deformation mechanisms not observable experimentally. As a conclusion, nanocrystalline and nanotwinned ultrafine crystals show a lower energy absorption than coarse-grained steel under ballistic loading, but under equal impact conditions with no penetration, deformation in the impact direction is smaller by nearly 40%. This a priori surprising difference in the energy absorption is rationalized by the more important local contribution of the deviatoric stress vs. volumetric stress under impact than under uniaxial deformation. Ultimately, the deformation advantage could be exploited in the future for personal protection systems where a small deformation under impact is of key importance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanisms of growth of a circular void by plastic deformation were studied by means of molecular dynamics in two dimensions (2D). While previous molecular dynamics (MD) simulations in three dimensions (3D) have been limited to small voids (up to ≈10 nm in radius), this strategy allows us to study the behavior of voids of up to 100 nm in radius. MD simulations showed that plastic deformation was triggered by the nucleation of dislocations at the atomic steps of the void surface in the whole range of void sizes studied. The yield stress, defined as stress necessary to nucleate stable dislocations, decreased with temperature, but the void growth rate was not very sensitive to this parameter. Simulations under uniaxial tension, uniaxial deformation and biaxial deformation showed that the void growth rate increased very rapidly with multiaxiality but it did not depend on the initial void radius. These results were compared with previous 3D MD and 2D dislocation dynamics simulations to establish a map of mechanisms and size effects for plastic void growth in crystalline solids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermoplastic elastomer/carbon nanotube composites are studied for sensor applications due to their excellent mechanical and electrical properties. Piezoresisitive properties of tri-block copolymer styrene-butadiene-styrene (SBS)/ carbon nanotubes (CNT) prepared by solution casting have been investigated. Young modulus of the SBS/CNT composites increases with the amount of CNT filler content present in the samples, without losing the high strain deformation on the polymer matrix (~1500 %). Further, above the percolation threshold these materials are unique for the development of large deformation sensors due to the strong piezoresistive response. Piezoresistive properties evaluated by uniaxial stretching in tensile mode and 4-point bending showed a Gauge Factors up to 120. The excellent linearity obtained between strain and electrical resistance makes these composites interesting for large strain piezoresistive sensors applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dislocation model, accurately describing the uniaxial plastic stress-strain behavior of dual phase (DP) steels, is proposed and the impact of martensite content and ferrite grain size in four commercially produced DP steels is analyzed. It is assumed that the plastic deformation process is localized to the ferrite. This is taken into account by introducing a non-homogeneity parameter, f(e), that specifies the volume fraction of ferrite taking active part in the plastic deformation process. It is found that the larger the martensite content the smaller the initial volume fraction of active ferrite which yields a higher initial deformation hardening rate. This explains the high energy absorbing capacity of DP steels with high volume fractions of martensite. Further, the effect of ferrite grain size strengthening in DP steels is important. The flow stress grain size sensitivity for DP steels is observed to be 7 times larger than that for single phase ferrite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two distinct expressions of the interaction potential between arbitrarily oriented curved vortex lines with respect to the crystal c axis are derived within the London approximation. One of these expressions is used to compute the eigenvalues of the elasticity matrix. We examine the elastic properties of the vortex chain lattice, recently proposed, concerning shearing deformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zusammenfassung:In dieser Studie werden Deformationsprozesse im mesozoischen Torlesse Akkretionskeil (Neuseeland) quantifiziert, um Aufschluß über die Dynamik in Akkretionskeilen zu erhalten. Absolute und relative Verformungsmessungen zeigen sowohl im lokalen als auch regionalen Maßstab eine stark heterogene Deformation des Torlesse Keils. Die regionale Deformation wurde mit Hilfe einer Tensordurchschnittsberechnung, unter Benutzung einzelner lokaler Verformungsdaten, als uniaxiale Verkürzung entlang einer subvertikalen, maximalen Verkürzungsachse charakterisiert. Absolute Verformungsmessungen an niedriggradigen Metasandsteinen belegen darüber hinaus durchschnittliche Volumenverluste von ca. 20% SiO2. Volumenveränderungen in tieferkrustalen Aufschlüssen wurden mittels einer geochemischen Massenbilanzanalyse abgeschätzt. Chemische Zusammensetzungen höhergradiger Zonen weichen je nach Grad der Volumenverformung von der Protolitzusammensetzung ab und zeigen somit Verluste von 15% SiO2 an. Da Speicherorte für das gelöste Material nicht bekannt sind, muss angenommen werden, dass das Material aus dem Keil abtransportiert wurde. Die Verformungsergebnisse geben weiterhin Aufschluß über den Grad der Kopplung zwischen Akkretionskeil und subduzierter Platte. Die ermittelten Scherwerte in den Gesteinen liegen deutlich unter den zu erwartenden Scherwerten, die mittels eines einfachen Modells berechnet wurden, das sowohl verschiedene Konvergenzgeschwindigkeiten als auch Exhumierungsraten berücksichtigt. Dies belegt, dass der Torlesse Keil stark von der subduzierten pazifischen Platte entkoppelt war und die Deformation hauptsächlich durch den Fluß der Sedimente in und aus dem Keil bestimmt wurde.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental measurements are used to characterize the anisotropy of flow stress in extruded magnesium alloy AZ31 sheet during uniaxial tension tests at temperatures between 350°C and 450°C, and strain rates ranging from 10-5 to 10-2 s-1. The sheet exhibits lower flow stress and higher tensile ductility when loaded with the tensile axis perpendicular to the extrusion direction compared to when it is loaded parallel to the extrusion direction. This anisotropy is found to be grain size, strain rate, and temperature dependent, but is only weakly dependent on texture. A microstructure based model (D. E. Cipoletti, A. F. Bower, P. E. Krajewski, Scr. Mater., 64 (2011) 931–934) is used to explain the origin of the anisotropic behavior. In contrast to room temperature behavior, where anisotropy is principally a consequence of the low resistance to slip on the basal slip system, elevated temperature anisotropy is found to be caused by the grain structure of extruded sheet. The grains are elongated parallel to the extrusion direction, leading to a lower effective grain size perpendicular to the extrusion direction. As a result, grain boundary sliding occurs more readily if the material is loaded perpendicular to the extrusion direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los sensores de fibra óptica son una tecnología que ha madurado en los últimos años, sin embargo, se requiere un mayor desarrollo de aplicaciones para materiales naturales como las rocas, que por ser agregados complejos pueden contener partículas minerales y fracturas de tamaño mucho mayor que las galgas eléctricas usadas tradicionalmente para medir deformaciones en las pruebas de laboratorio, ocasionando que los resultados obtenidos puedan ser no representativos. En este trabajo fueron diseñados, fabricados y probados sensores de deformación de gran área y forma curvada, usando redes de Bragg en fibra óptica (FBG) con el objetivo de obtener registros representativos en rocas que contienen minerales y estructuras de diversas composiciones, tamaños y direcciones. Se presenta el proceso de elaboración del transductor, su caracterización mecánica, su calibración y su evaluación en pruebas de compresión uniaxial en muestras de roca. Para verificar la eficiencia en la transmisión de la deformación de la roca al sensor una vez pegado, también fue realizado el análisis de la transferencia incluyendo los efectos del adhesivo, de la muestra y del transductor. Los resultados experimentales indican que el sensor desarrollado permite registro y transferencia de la deformación fiables, avance necesario para uso en rocas y otros materiales heterogénos, señalando una interesante perspectiva para aplicaciones sobre superficies irregulares, pues permite aumentar a voluntad el tamaño y forma del área de registro, posibilita también obtener mayor fiabilidad de resultados en muestras de pequeño tamaño y sugiere su conveniencia en obras, en las cuales los sistemas eléctricos tradicionales tienen limitaciones. ABSTRACT Optical fiber sensors are a technology that has matured in recent years, however, further development for rock applications is needed. Rocks contain mineral particles and features larger than electrical strain gauges traditionally used in laboratory tests, causing the results to be unrepresentative. In this work were designed, manufactured, and tested large area and curved shape strain gages, using fiber Bragg gratings in optical fiber (FBG) in order to obtain representative measurement on surface rocks samples containing minerals and structures of different compositions, sizes and directions. This reports presents the processes of manufacturing, mechanical characterization, calibration and evaluation under uniaxial compression tests on rock samples. To verify the efficiency of rock deformation transmitted to attached sensor, it was also performed the analysis of the strain transfer including the effects of the bonding, the sample and the transducer. The experimental results indicate that the developed sensor enables reliable measurements of the strain and its transmission from rock to sensor, appropriate for use in heterogeneous materials, pointing an interesting perspective for applications on irregular surfaces, allowing increasing at will the size and shape of the measurement area. This research suggests suitability of the optical strain gauge for real scale, where traditional electrical systems have demonstrated some limitations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation leads to a hardening of steel due to an increase in the density of dislocations and a reduction in their mobility, giving rise to a state of elevated residual stresses in the crystal lattice. In the microstructure, one observes an increase in the contribution of crystalline orientations which are unfavorable to the magnetization, as seen, for example, by a decrease in B(50), the magnetic flux density at a field of 50 A/cm. The present study was carried out with longitudinal strips of fully processed non-oriented (NO) electrical steel, with deformations up to 70% resulting from cold rolling in the longitudinal direction. With increasing plastic deformation, the value of B(50) gradually decreases until it reaches a minimum value, where it remains even for larger deformations. On the other hand, the coercive field H(c) continually increases. Magnetometry results and electron backscatter diffraction results are compared and discussed. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3560895]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a quasitoroidal set of coordinates with coaxial circular magnetic surfaces, Vlasov equation is solved for collisionless plasmas in drift approach and a perpendicular dielectric tensor is found for large aspect ratio tokamaks in a low frequency band. Taking into account plasma rotation and charge separation parallel electric field, it is found that an ion geodesic effect deform Alfveacuten wave continuum producing continuum minimum at the rational magnetic surfaces, which depends on the plasma rotation and poloidal mode numbers. In kinetic approach, the ion thermal motion defines the geodesic effect but the mode frequency also depends on electron temperature. A geodesic ion Alfveacuten mode predicted below the continuum minimum has a small Landau damping in plasmas with Maxwell distribution but the plasma rotation may drive instability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although use of high-strength reinforced concrete (RC) jackets has become common practice worldwide, there are still two unresolved issues regarding the contribution of the original concrete and the effects of existing loads. Twelve RC-jacketed columns were tested with and without preloading under uniaxial compression. Tests showed the entire core to contribute to the capacity of the jacketed column, as long as adequate confinement is provided. Also, preloading does not adversely affect the capacity of the jacketed column, while it may increase its deformability, especially in square sections. Transverse reinforcement in the jacket directly improves ductility of the strengthened column, especially in circular sections.