984 resultados para U-PB GEOCHRONOLOGY
Resumo:
Voluminous (≥3·9 × 105 km3), prolonged (∼18 Myr) explosive silicic volcanism makes the mid-Tertiary Sierra Madre Occidental province of Mexico one of the largest intact silicic volcanic provinces known. Previous models have proposed an assimilation–fractional crystallization origin for the rhyolites involving closed-system fractional crystallization from crustally contaminated andesitic parental magmas, with <20% crustal contributions. The lack of isotopic variation among the lower crustal xenoliths inferred to represent the crustal contaminants and coeval Sierra Madre Occidental rhyolite and basaltic andesite to andesite volcanic rocks has constrained interpretations for larger crustal contributions. Here, we use zircon age populations as probes to assess crustal involvement in Sierra Madre Occidental silicic magmatism. Laser ablation-inductively coupled plasma-mass spectrometry analyses of zircons from rhyolitic ignimbrites from the northeastern and southwestern sectors of the province yield U–Pb ages that show significant age discrepancies of 1–4 Myr compared with previously determined K/Ar and 40Ar/39Ar ages from the same ignimbrites; the age differences are greater than the errors attributable to analytical uncertainty. Zircon xenocrysts with new overgrowths in the Late Eocene to earliest Oligocene rhyolite ignimbrites from the northeastern sector provide direct evidence for some involvement of Proterozoic crustal materials, and, potentially more importantly, the derivation of zircon from Mesozoic and Eocene age, isotopically primitive, subduction-related igneous basement. The youngest rhyolitic ignimbrites from the southwestern sector show even stronger evidence for inheritance in the age spectra, but lack old inherited zircon (i.e. Eocene or older). Instead, these Early Miocene ignimbrites are dominated by antecrystic zircons, representing >33 to ∼100% of the dated population; most antecrysts range in age between ∼20 and 32 Ma. A sub-population of the antecrystic zircons is chemically distinct in terms of their high U (>1000 ppm to 1·3 wt %) and heavy REE contents; these are not present in the Oligocene ignimbrites in the northeastern sector of the Sierra Madre Occidental. The combination of antecryst zircon U–Pb ages and chemistry suggests that much of the zircon in the youngest rhyolites was derived by remelting of partially molten to solidified igneous rocks formed during preceding phases of Sierra Madre Occidental volcanism. Strong Zr undersaturation, and estimations for very rapid dissolution rates of entrained zircons, preclude coeval mafic magmas being parental to the rhyolite magmas by a process of lower crustal assimilation followed by closed-system crystal fractionation as interpreted in previous studies of the Sierra Madre Occidental rhyolites. Mafic magmas were more probably important in providing a long-lived heat and material flux into the crust, resulting in the remelting and recycling of older crust and newly formed igneous materials related to Sierra Madre Occidental magmatism.
Resumo:
The Borborema Province has three major subprovinces. The northern subprovince lies north of the Patos shear zone and is comprised of Paleoproterozoic cratonic basement with Archean nuclei, plus overlying Neoproterozoic supracrustal rocks and Brasiliano plutonic rocks. The central subprovince occurs between the Patos and Pernambuco shear zones and is mainly comprised of the Zona Transversal. The southern subprovince occurs between the Pernamabuco shear zone and the Sao Francisco craton and is comprised of a tectonic collage of various blocks, terranes, or domains ranging in age from Archean to Neoproterozoic. This report focuses on the Zona Transversal, especially on Brasiliano rocks for which we have the most new information. Paleoproterozoic gneisses with ages of 2.0-2.2 Ga occur discontinuously throughout the Zona Transversal. The Cariris Velhos suite consists of metavolcanic, metasedimentary, and metaplutonic rocks yielding U-Pb zircon ages of 995-960 Ma. This suite is mainly confined to a 100 km wide belt that extends for more than 700 km within the Alto Pajeu terrane. Sm-Nd model ages in metaigneous rocks cluster about 1.3-1.6 Ga, indicating that older crust was involved in genesis of their magmas. Brasiliano supracrustal rocks dominate the Pianco-Alto Brigida terrane, and they probably also constitute significant parts of the Alto Pajeu and Rio Capibaribe terranes. They are only slightly older than early stages of Brasiliano plutonism, with detrital zircon ages at least as young as 620 Ma; most T(DM) ages range from 1.2 to 1.6 Ga. Brasiliano plutons range from ca. 640 to 540 Ma, and their T(DM) ages range from 1.2 to 2.5 Ga. Previous workers have shown significant correlations among U-Pb ages, Sm-Nd model ages, petrology, and geochemistry, and we are able to reinforce and extend these correlations. Stage I plutons formed 640 -610 Ma and have T(DM) ages less than 1.5 Ga. Stage 11 (610-590 Ma) contains few plutons, but coincides with the peak of compressional deformation, metamorphism, and formation of migmatites. Stage III plutons (590 to ca. 575 Ma) have older T(DM) ages (ca. 1.8-2.0 Ga), as do Stage IV plutons (575 to ca. 550 Ma; T(DM) from 1.9 to 2.4 Ga). Stage III plutons formed during the transition from compressional to transcurrent deformation, while Stage IV plutons are mainly post-tectonic. Stage V plutons (550-530 Ma) are commonly undeformed (except along younger shear zones) and have A-type geochemistry. The five stages have distinct geochemical properties, which suggest that the tectonic settings evolved from early, arc-related magma-genesis (Stage I) to within-plate magma-genesis (Stage V), with perhaps some intermediate phases of extensional environments. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The Itaoca pluton consists of porphyritic monzogranite that intruded the upper crust into low-grade metasedimentary rocks of the Apiai Dornain (Ribeira Belt). Anisotropy of magnetic susceptibility and zircon U-Pb (Shrimp) geochronology were combined to determine pluton emplacement mechanisms and its chronology relative to the collision structures of the Paranapiacaba (Brasiliano II) orogenic system. Magnetic susceptibility ranges between 4 and 38 x 10(-3) SI, and thermomagnetic measurements indicate multidomain magnetite is the main carrier of anisotropy. The pluton shows an ""onion-skin"" structure roughly elongated to the northeast with its hinge zone including kilometer-wide roof-pendants. Magnetic lineations are variable in orientation in consistency with the dominant oblate symmetry of the magnetic fabric. A distinct NE-trending point-maxima, however, indicates the mean lineation is parallel to the stretching direction of the transpressive deformation that affected the regional host rocks. Prismatic zircon from the monzogranite, both in the core and in the finely-zoned margins, yielded an age of 623 +/- 10 Ma. These results suggest the magmatic fabric recorded the earlier strain increments of the regional shear deformation. It may correspond to the transition from continental arc to collision tectonics of the southern Ribeira Belt. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Rapakivi granites and associated mafic and ultramafic rocks in the Rondonia Tin Province, southwestern Amazonian craton, Brazil were emplaced during six discrete episodes of magmatism between ca 1600 and 970 Ma. The seven rapakivi granite suites emplaced at this time were the Serra da Providencia Intrusive Suite (U-Pb ages between 1606 and 1532 Ma); Santo Antonio Intrusive Suite(U-Pb age 1406 Ma), Teotonio Intrusive Suite (U-Pb age 1387 Ma); Alto Candeias Intrusive Suite (U-Pb ages between 1346 and 1338 Ma); Sao Lourenco-Caripunas Intrusive Suite (U-Pb ages between 1314 and 1309 Ma); Santa Clara Intrusive Suite (U-Pb ages between 1082 and 1074 Ma); and Younger Granites of Rondonia (U-Pb ages between 998 and 974 Ma). The Serra da Providencia Intrusive Suite intruded the Paleoproterozoic (1.80 to 1.70 Ga) Rio Negro-Juruena crust whereas the other suites were emplaced into the 1.50 to 1.30 Ga Rondonia-San Ignacio crust. Their intrusion was contemporaneous with orogenic activity in other parts of the southwestern Amazonian craton, except for the oldest, Serra da Providencia Intrusive Suite. Orogenic events coeval with emplacement of the Serra da Providencia Intrusive Suite are not clearly recognized in the region. The Santo Antonio, Teotonio, Alto Candeias and Sao Lourenco-Caripunas Intrusive Suites are interpreted to represent extensional anorogenic magmatism associated with the terminal stages of the Rondonian-San Ignacio orogeny. At least the Sao Lourenco-Caripunas rapakivi granites and coeval intra-continental rift sedimentary rocks may, in contrast, represent the products of extensional tectonics and rifting preceding the Sunsas/Aguapei orogeny (1.25 to 1.0 Ga). The two youngest rapakivi suites, the Santa Clara Intrusive Suite and Younger Granites of Rondonia, seemingly represent inboard magmatism in the Rondonian-San Ignacio Province during a younger episode of reworking in the Rio Negro-Juruena Province during the waning stages of the collisional 1.1 to 1.0 Ga Sunsas/Aguapei orogeny. The six intra-plate rapakivi granite episodes in the southwestern part of the Amazonian craton form three broad periods of anorogenic magmatism that have age-correlative events composed of similar rocks and geologic environments in eastern Laurentia and Baltica, although the exact timing of magmatism appears slightly different. Recognition of lithologic and chronological correlations between various cratons provide important constraints to models explaining the interplay between rapakivi granite magmatism and deep crustal evolution of an early Mesoproterozoic supercontinent. They are, furthermore, important to plate tectonic models for the assembly, dispersal and reassembly of Amazonia, Laurentia and Baltica in the Mesoproterozoic and Neoproterozoic. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
The Brasília belt borders the western margin of the São Francisco Craton and records the history of ocean opening and closing related to the formation of West Gondwana. This study reports new U-Pb data from the southern sector of the belt in order to provide temporal limits for the deposition and ages of provenance of sediments accumulated in passive margin successions around the south and southwestern margins of the São Francisco Craton, and date the orogenic events leading to the amalgamation of West Gondwana. Ages of detrital zircons (by ID-TIMS and LA-MC-ICPMS) were obtained from metasedimentary units of the passive margin of the São Francisco Craton from the main tectonic domains of the belt: the internal allochthons (Araxá Group in the Áraxá and Passos Nappes), the external allochthons (Canastra Group, Serra da Boa Esperança Metasedimentary Sequence and Andrelândia Group) and the autochthonous or Cratonic Domain (Andrelândia Group). The patterns of provenance ages for these units are uniform and are characterised as follows: Archean- Paleoproterozoic ages (3.4-3.3, 3.1-2.7, and 2.5-2.4Ga); Paleoproterozoic ages attributed to the Transamazonian event (2.3-1.9Ga, with a peak at ca. 2.15Ga) and to the ca. 1.75Ga Espinhaço rifting of the São Francisco Craton; ages between 1.6 and 1.2Ga, with a peak at 1.3Ga, revealing an unexpected variety of Mesoproterozoic sources, still undetected in the São Francisco Craton; and ages between 0.9 and 1.0Ga related to the rifting event that led to the individualisation of the São Francisco paleo-continent and formation of its passive margins. An amphibolite intercalation in the Araxá Group yields a rutile age of ca. 0.9Ga and documents the occurrence of mafic magmatism coeval with sedimentation in the marginal basin. Detrital zircons from the autochthonous and parautochthonous Andrelândia Group, deposited on the southern margin of the São Francisco Craton, yielded a provenance pattern similar to that of the allochthonous units. This result implies that 1.6-1.2Ga source rocks must be present in the São Francisco Craton. They could be located either in the cratonic area, which is mostly covered by the Neoproterozoic epicontinental deposits of the Bambuí Group, or in the outer paleo-continental margin, buried under the allochthonous units of the Brasília belt. Crustal melting and generation of syntectonic crustal granites and migmatisation at ca. 630Ma mark the orogenic event that started with westward subduction of the São Francisco plate and ended with continental collision against the Paraná block (and Goiás terrane). Continuing collision led to the exhumation and cooling of the Araxá and Passos metamorphic nappes, as indicated by monazite ages of ca. 605Ma and mark the final stages of tectonometamorphic activity in the southern Brasília belt. Whilst continent-continent collision was proceeding on the western margin of the São Francisco Craton along the southern Brasília belt, eastward subduction in the East was generating the 634-599Ma Rio Negro magmatic arc which collided with the eastern São Francisco margin at 595-560Ma, much later than in the Brasília belt. Thus, the tectonic effects of the Ribeira belt reached the southernmost sector of the Brasília belt creating a zone of superposition. The thermal front of this event affected the proximal Andrelândia Group at ca. 588Ma, as indicated by monazite age. The participation of the Amazonian craton in the assembly of western Gondwana occurred at 545-500Ma in the Paraguay belt and ca. 500Ma in the Araguaia belt. This, together with the results presented in this work lead to the conclusion that the collision between the Paraná block and Goiás terrane with the São Francisco Craton along the Brasília belt preceded the accretion of the Amazonian craton by 50-100 million years. © 2003 Elsevier B.V. All rights reserved.
Resumo:
© 2016 Elsevier Ltd.The early Miocene Santa Cruz Formation (SCF) in southern Patagonia hosts the Santacrucian South American Land Mammal Age (SALMA), whose age is known mainly from exposures along the Atlantic coast. Zircon U-Pb ages were obtained from intercalated tuffs from four inland sections of the SCF: 17.36 ± 0.63 Ma for the westernmost Río Bote locality, and 17.04 ± 0.55 Ma-16.32 ± 0.62 Ma for central Río Santa Cruz localities. All ages agree with the bounding age of underlying marine units and with equivalent strata in coastal exposures. New ages and available sedimentation rates imply time spans for each section of ~18.2 to 17.36 Ma for Río Bote and 17.45-15.63 Ma for central Río Santa Cruz (Burdigalian). These estimates support the view that deposition of the SCF began at western localities ~1 Ma earlier than at eastern localities, and that the central Río Santa Cruz localities expose the youngest SCF in southern Santa Cruz Province. Associated vertebrate faunas are consistent with our geochronologic synthesis, showing older (Notohippidian) taxa in western localities and younger (Santacrucian) taxa in central localities. The Notohippidian fauna (19.0-18.0 Ma) of the western localities is synchronous with Pinturan faunas (19.0-18.0 Ma), but older than Santacrucian faunas of the Río Santa Cruz (17.2-15.6 Ma) and coastal localities (18.0-16.2 Ma). The Santacrucian faunas of the central Río Santa Cruz localities temporally overlap Colloncuran (15.7 Ma), Friasian (16.5 Ma), and eastern Santacrucian faunas.
Resumo:
The Santa Eulalia plutonic complex (SEPC) is a late-Variscan granitic body placed in the Ossa-Morena Zone. The host rocks of the complex belong to metamorphic formations from Proterozoic to Lower Paleozoic. The SEPC is a ring massif (ca. 400 km2 area) composed by two main granitic facies with different colours and textures. From the rim to the core, there is (i) a peripheral pink medium- to coarse-grained granite (G0 group) involving large elongated masses of mafic and intermediate rocks, from gabbros to granodiorites (M group), and (ii) a central gray medium-grained granite (G1 group). The mafic to intermediate rocks (M group) are metaluminous and show wide compositions: 3.34–13.51 wt% MgO; 0.70–7.20 ppm Th; 0.84–1.06 (Eu/Eu*)N (Eu* calculated between Sm and Tb); 0.23–0.97 (Nb/Nb*)N (Nb* calculated between Th and La). Although involving the M-type bodies and forming the outer ring, the G0 granites are the most differentiated magmatic rocks of the SEPC, with a transitional character between metaluminous and peraluminous: 0.00–0.62 wt% MgO; 15.00–56.00 ppm Th; and 0.19–0.42 (Eu/Eu*)N ; 0.08–0.19 (Nb/Nb*)N [1][2]. The G1 group is composed by monzonitic granites with a dominant peraluminous character and represents the most homogeneous compositional group of the SEPC: 0.65–1.02 wt% MgO; 13.00–16.95 ppm Th; 0.57–0.70 (Eu/Eu*)N ; 0.14–0.16 (Nb/Nb*)N . According to the SiO2 vs. (Na2O+K2O–CaO) relationships, the M and G1 groups predominantly fall in the calc-alkaline field, while the G0 group is essencially alkali-calcic; on the basis of the SiO2 vs. FeOt/(FeOt+MgO) correlation, SEPC should be considered as a magnesian plutonic association [3]. New geochronological data (U-Pb on zircons) slightly correct the age of the SEPC, previously obtained by other methods (290 Ma, [4]). They provide ages of 306 2 Ma for the M group, 305 6 Ma for the G1 group, and 301 4 Ma for the G0 group, which confirm the late-Variscan character of the SEPC, indicating however a faintly older emplacement, during the Upper Carboniferous. Recent whole-rock isotopic data show that the Rb-Sr system suffered significant post-magmatic disturbance, but reveal a consistent set of Sm-Nd results valuable in the approach to the magmatic sources of this massif: M group (2.9 < Ndi < +1.8); G1 group (5.8 < Ndi < 4.6); G0 group (2.2 < Ndi < 0.8). These geochemical data suggest a petrogenetic model for the SEPC explained by a magmatic event developed in two stages. Initially, magmas derived from long-term depleted mantle sources (Ndi < +1.8 in M group) were extracted to the crust promoting its partial melting and extensive mixing and/or AFC magmatic evolution, thereby generating the G1 granites (Ndi < 4.6). Subsequently, a later extraction of similar primary magmas in the same place or nearby, could have caused partial melting of some intermediate facies (e.g. diorites) of the M group, followed by magmatic differentiation processes, mainly fractional crystallization, able to produce residual liquids compositionally close to the G0 granites (Ndi < 0.8). The kinetic energy associated with the structurally controlled (cauldron subsidence type?) motion of the G0 liquids to the periphery, would have been strong enough to drag up M group blocks as those occurring inside the G0 granitic ring.
Resumo:
Zircon recrystallization is a common process during high-grade metamorphism and promotes partial or complete resetting of the original isotopic and chemical characteristics of the mineral and thus complicates U-Pb geochronological interpretation. In Central Brazil, this complexity may be illustrated by three composite mafic-ultramafic intrusions metamorphosed under amphibolite-to-granulite conditions. Their ages of emplacement and metamorphic ages have been a matter of controversy for the last thirty years. The Serra da Malacacheta and Barro Alto complexes make up the southernmost of these layered bodies and four samples from distinct rock types were investigated in order to verify the consequences of metamorphic alteration of zircon for U-Pb dating. Cathodoluminescent imaging reveals internal features which are typical of concomitant dissolution-reprecipitation processes, such as convolute zoning and inward-moving recrystallization fronts, even in samples in which partially preserved igneous textures are observed. Due to this extensive alteration, LA-ICPMS U-Pb isotopic analysis yielded inconclusive data. However, in situ Hf isotopic and trace-element analyses help to clarify the real meaning of the geochronological data. Low Lu/Hf (<0.004) and homogeneous (176)Hf/(177)Hf(t) values imply that the zircon populations within individual samples have crystallized in a single episode, despite the observed variations in age values. Trace element signatures of zircon grains from garnet-bearing samples reveal that they were unreactive to the development of the peak metamorphism mineral assemblage and, thus, the main chemical feature in such grains is attributed to a coupled dissolution-reprecipitation process. However, in the Cafelandia amphibolite an additional alteration process is identified, probably related to the influx of late-stage fluids. Combined isotopic and geochemical investigation on zircon grains allowed the distinction of two magmatic events. The first corresponds to the crystallization of the Serra da Malacacheta Complex and characterizes a juvenile magmatism at similar to 1.3 Ga. The younger episode, recognized in the Barro Alto Complex, is dated at ca. 800 Ma and is represented by mafic and ultramafic rocks showing intense contamination with continental crust, implying that the emplacement took place, most likely, in a continental back-arc setting. Altered zircon domains as well as titanite grains date the metamorphic event at ca. 760-750 Ma. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
ELA-ICP-MS U-Pb zircon geochronology has been used to show that the porphyritic intrusions related to the formation of the Bajo de la Alumbrera porphyry Cu-Au deposit, NW Argentina, are cogenetic with stratigraphically well-constrained volcanic and volcaniclastic rocks of the Late Miocene Farallon Negro Volcanic Complex. Zircon geochronology for intrusions in this deposit and the host volcanic sequence show that multiple mineralized porphyries were emplaced in a volcanic complex that developed over 1.5 million years. Volcanism occurred in a multivent volcanic complex in a siliciclastic intermontane basin. The complex evolved from early mafic-intermediate effusive phases to a later silicic explosive phase associated with mafic intrusions. Zircons from the basal mafic-intermediate lavas have ages that range from 8.46 +/- 0.14 to 7.94 +/- 0.27 Ma. Regionally extensive silicic explosive volcanism occurred at similar to8.0 Ma (8.05 +/- 0.13 and 7.96 +/- 0.11 Ma), which is co-temporal with intrusion of the earliest mineralized porphyries at Bajo de la Alumbrera (8.02 +/- 0.14 and 7.98 +/- 0.14 Ma). Regional uplift and erosion followed during which the magmatic-hydrothermal system was probably unroofed. Shortly thereafter, dacitic lava domes were extruded (7.95 +/- 0.17 Ma) and rhyolitic diatremes (7.79 +/- 0.13 Ma) deposited thick tuff blankets, across the region. Emplacement of large intermediate composition stocks occurred at 7.37 +/- 0.22 Ma, shortly before renewed magmatism occurred at Bajo de la Alumbrera (7.10 +/- 0.07 Ma). The latest porphyry intrusive event is temporally associated with new ore-bearing magmatic-hydrothermal fluids. Other dacitic intrusions are associated with subeconomic deposits that formed synchronously with the mineralized porphyries at Bajo de la Alumbrera. However, their emplacement continued (from 7.10 +/- 0.06 to 6.93 +/- 0.07 Ma) after the final intrusion at Bajo de al Alumbrera. Regional volcanism had ceased by 6.8 Ma (6.92 +/- 0.07 Ma). The brief history of the volcanic complex hosting the Bajo de la Alumbrera Cu-Au deposit differs from that of other Andean provinces hosting porphyry deposits. For example, at the El Salvador porphyry copper district in Chile, magmatism related to Cu mineralization was episodic in regional igneous activity that occurred over tens of millions of years. Bajo de la Alumbrera resulted from the superposition of multiple porphyry-related hydrothermal systems, temporally separated by a million years. It appears that the metal budget in porphyry ore deposits is not simply a function of their longevity and/or the superposition of multiple porphyry systems. Nor is it a function of the duration of the associated cycle of magmatism. Instead, the timing of processes operating in the parental magma body is the controlling factor in the formation of a fertile porphyry-related ore system.
Resumo:
A comparação entre o Complexo Juiz de Fora e a Unidade Granulítica Ponte de Zinco (Mangaratiba - RJ) revelou que existem diferenças significativas entre essas unidades. Na Unidade Granulítica Ponte de Zinco, são encontrados ortogranulitos de composição granítica e granodiorítica, que representam o embasamento da Unidade, denominada aqui de Ortogranulitos Ribeirão das Lajes. Dois outros litotipos ortoderivados também foram encontrados: (i) um ortognaisse com granada (MAN-JEF-03a), sendo que a granada ocorre de forma subordinada; (ii) ortognaisse leucocrático (MAN-JEF-04), com características miloníticas. Além dessas, rochas metassedimentares também afloram na Unidade Granulítica Ponte de Zinco. Foi interpretado que um ortogranulito (MAN-JEF-01a) de alto-K, com composição monzogranítica, cristalizou em ca. 2653 37 Ma (U-Pb em zircão por LA-ICPMS), afetado por um evento no Neoproterozóico, que gerou os minerais máficos hidratados, observados na análise petrográfica e como mostram as borda de sobrecrescimento em zircão. Sua idade modelo de Nd de 2,7 Ga e seu εNd positivo de +2,1, apontam para uma gênese mantélica, tendo assimilado rochas crustais, pois são encontrados grãos de zircão herdados de aproximadamente 2996 17 Ma e 3343 3.8 Ma. Os dados de litogeoquímica e sua razão 87Sr/86 Sr(t) (0,70529), são compatíveis com uma geração em um arco continental. O ortognaisses com granada do ponto MAN-JEF-03 possui composição granodiorítica. A idade de cristalização interpretada pela análise geocronológica U-Pb em zircão (LA-ICPMS), foi ca. 2117 15 Ma. Esse litotipo foi metamorfizado no Neoproterozóico, sendo a idade obtida pelo intercepto inferior de 631 40 Ma. Seus dados isotópicos apontam para uma rocha juvenil gerada a partir do manto (TDM ≈ de 2,1 Ga e εNd = +3,4). Sua alta razão 87Sr/86 Sr(t) (0,710 ) juntamente com os grãos de zircão herdados (2,6 Ga) e a presença de enclaves, indicam assimilação de rochas crustais. O ortognaisse leucocrático (MAN-JEF-04) classificado como alto-K, possui composição monzogranítica, idade 2132 9,4 Ma U-Pb em zircão (LA-ICPMS). Um único grão relíquiar de ortopiroxênio encontrado em lâmina, , indica que a rocha já foi submetida a metamorfismo de fácies granulito, porém esse evento não deixou registro nos grãos analisados. O retrometamorfismo pode ter ocorrido em dois momentos, 647 11 Ma e 595 38 Ma, calculados através da concordia age, em sobrecrescimentos homogêneos e, pelo intercepto inferior, respectivamente. Sua baixa razão 87Sr/86 Sr(t) (≈ 0,703) associada com εNd positivo (+2,3) e sua idade modelo de aproximadamente 2,1 Ga, revelam que a rocha foi formada por um material mantélico juvenil. Já as análises geocronológicas em U-Pb em zircão (LA-ICPMS) na região de Juiz de Fora (MG), revelaram a existência de dois litotipos Arqueanos: um ortogranulito granodiorítico (MB-JEF-01b), de baixo-K com idade de 2849 11 Ma e com herança de 2975 10 Ma. Seu εNd positivo (+5,9) aponta para uma gênese a partir do manto depletado, já sua alta razão 87Sr/86Sr(t) (≈0,709) indica contaminação de Rb de fontes externas, talvez causada pela assimilação da crosta, como revelam os zircões herdados e/ou fluidos retrometamorficos. Outro litotipo é uma rocha gabróica do tipo E-MORB, cuja idade foi calculada em 2691 14 Ma, com retrometamorfismo ocorrido no intervalo de 604 67 Ma, obtida pelo intercepto inferior. Seu εNd igual a +3,4 e sua razão 87Sr/86 Sr(t) (≈0,701) mostram extração a partir do manto depletado. Novos dados isotópicos do CJF na região de Três Rios (RJ) e Juiz de Fora (MG), sugerem que os ortogranulitos calcioalcalinos podem representar grupos distintos. Rochas com εNd positivos são consequentemente associadas ao manto depletado, porém rochas com εNd negativos devem ter sido geradas por fusão crustal, que podem ser fusão de crosta inferior, devido a razão 87Sr/86 Sr(t) (0,70514) encontrada no amostra MB-JEF-02a (ortogranulito de alto-K) ou tendo a crosta contribuição nas gênese dessas rochas. Os ortogranulitos básicos possuem εNd positivos com baixas razões 87Sr/86 Sr(t) , o que indica extração a partir do manto depletado, porém sua razões La/YbN e La/NbN maiores que 1, revelam alguma contribuição de uma fonte enriquecida, assim também mostram suas razões Pb/Pb, que são maiores do que as razões calculadas para evolução de Pb na Terra. Essas interpretações ainda podem ser estendidas para um ortoanfibolito da série alcalina, encontrado na região de Três Rios (RJ).
Resumo:
On the basis of geologic, petrologic, and U-Pb geochronologic data the basement rocks in the east-central part of the Rondonia Tin Province (RTP, southwestern Amazonian craton) are grouped into five lithologic associations: (1) tonalitic gneiss (1.75 Ga); (2) enderbitic granulite (1.73 Ga); (3) paragneiss; (4) granitic and charnockitic augen gneisses (1.57-1.53 Ga); and (5) fine-grained granitic gneiss and charnockitic granulite (1.43-1.42 Ga). The first three are related to development of the Paleoproterozoic Rio Negro-Juruena Province and represent the oldest crust in the region. The tonalitic gneisses and enderbitic granulites show calc-alkaline affinities and Nd isotopic compositions (initial epsilon(Nd) = +0-1 to -1.5; T-DM of 2.2-2.1 Ga) that suggest a continental arc margin setting for the original magmas. The paragneisses yield T-DM values of 2.2-2.1 Ga suggesting that source material was primarily derived from the Ventuari-Tapajos and Rio Negro-Juruena crusts, but detrital zircon ages and an intrusive granitoid bracket deposition between 1.67 and 1.57 Ga. The granitic and charnockitic augen gneisses show predominantly A-type and within-plate granite affinities, but also some volcanic arc granite characteristics. The initial epsilon(Nd) values (+0.6 to +2.0) indicate mixing of magmas derived from depleted mantle and older crustal sources. These rocks are correlated to the 1.60-1.53 Ga Serra da Providencia intrusive suite that reflects inboard magmatism coeval with the Cachoeirinha orogen located to the southeast. The fine-grained granitic gneiss and charnockitic granulites represent the first record of widespread magmatism at 1.43-1.42 Ga in northern Rondonia. Their geochemical signatures and the slightly positive initial epsilon(Nd) values (+0.7 to +1.2) are very similar to those of the most evolved granites of the calc-alkaline Santa Helena batholith farther southeast. U-Pb monazite and Sm-Nd whole-rock-garnet ages demonstrate that a high-grade tectonometa-morphic episode occurred in this region at 1.33-1.30 Ga. This episode attained upper-amphibolite conditions and is interpreted as the peak of the Rondonian-San Ignacio orogeny. The U-Pb and Sm-Nd data presented here and data published on rapakivi granites elsewhere indicate that the east-central part of the RTP is a poly-orogenic region characterized by successive episodes of magmatism, metamorphism, and deformation between 1.75 and 0.97 Ga. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The Duolong porphyry Cu-Au deposit (5.4 Mt at 0.72% Cu, 41 t at 0.23 g/t Au), which is related to the granodiorite porphyry and the quartz-diorite porphyry from the Bangongco copper belt in central Tibet, formed in a continental arc setting. Here, we present the zircon U-Pb ages, geochemical whole-rock, Sr-Nd whole-rock and zircon in-situ Hf-O isotopic data for the Duolong porphyries. Secondary ion mass spectrometry (SIMS) zircon U-Pb analyses for six samples yielded consistent ages of ~118 Ma, indicating a Cretaceous formation age. The Duolong porphyries (SiO2 of 58.81-68.81 wt.%, K2O of 2.90-5.17 wt.%) belong to the high-K calc-alkaline series. They show light rare earth element (LREE)-enriched distribution patterns with (La/Yb)N = 6.1-11.7, enrichment in large ion lithophile elements (e.g., Cs, Rb, and Ba) and depletion of high field strength elements (e.g., Nb), with negative Ti anomalies. All zircons from the Duolong porphyries share relatively similar Hf-O isotopic compositions (d18O=5.88-7.27 per mil; eHf(t)=3.6-7.3), indicating that they crystallized from a series of cogenetic melts with various degrees of fractional crystallization. This, along with the general absence of older inherited zircons, rules out significant crustal contamination during zircon growth. The zircons are mostly enriched in d18O relative to mantle values, indicating the involvement of an 18O-enriched crustal source in the generation of the Duolong porphyries. Together with the presence of syn-mineralization basaltic andesite, the mixing between silicic melts derived from the lower crust and evolved H2O-rich mafic melts derived from the metsomatizied mantle wedge, followed by subsequent fractional crystallization (FC) and minor crustal contamination in the shallow crust, could well explain the petrogenesis of the Duolong porphyries. Significantly, the hybrid melts possibly inherited the arc magma characteristics of abundant F, Cl, Cu, and Au elements and high oxidation state, which contributed to the formation of the Duolong porphyry Cu-Au deposit.