930 resultados para Two section


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the first hybrid mode-locking of a monolithic two-section multiple quantum well InGaN based laser diode. This device, with a length of 1.5 mm, has a 50-μm-long absorber section located at the back facet and generates a continuous stable 28.6 GHz pulse train with an average output power of 9.4 mW at an emission wavelength of 422 nm. Under hybrid mode-locking, the pulse width reduces to 4 ps, the peak power increases to 72 mW, and the microwave linewidth reduces by 13 dB to <500 kHz. We also observe the passive mode-locking with pulse width and peak power of 8 ps and 37 mW, respectively. © 1989-2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 1.55 mu m InGaAsP-InP two-section DFB laser with a variable ridge width has been fabricated. Self-pulsations with frequencies around 3 GHz and 40 GHz are observed. The pulsation mechanisms related to the two frequencies are discussed and the tunability of generated self-pulsations is studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 1.55 mu m InGaAsP-InP index-coupled two-section DFB self-pulsation laser (SPL) with a varied ridge width has been fabricated. A record wide self-pulsation tuning range above 450 GHz has been achieved for this index-coupled DFB SPL. Furthermore, frequency locking to an optically injected modulated signal is successfully demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 1.55 mu m InGaAsP-InP partly gain-coupled two-section DFB self-pulsation laser (SPL) with a varied ridge width has been fabricated. The laser produces self-pulsations with a frequency tuning range of more than 135 GHz. All-optical clock recovery from 40 Gb/s degraded data streams has been demonstrated. Successful lockings of the device at frequencies of 30 GHz, 40 GHz, 50 GHz, and 60 GHz to a 10 GHz sidemode injection are also conducted, which demonstrates the capability of the device for all-optical clock recovery at different frequencies. This flexibility of the device is highly desired for practical uses. Crown Copyright

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two-section tunable ridge waveguide distributed Bragg reflector (DBR) laser fabricated by the selective intermixing of an InGaAsP-InGaAsP quantum well structure is presented. The threshold current of the laser is 51mA. The tunable range of the laser is 4.6nm, and the side mode suppression ratio (SMSR) is 40dB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

于2010-11-23批量导入

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the gain-switching dynamics of two-section tapered lasers by means of a simplified three-rate-equation model. The goal is to improve the understanding of the underlying physics and to optimize the device geometry to achieve high power short duration optical pulses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behavior of a temperature self-compensating, fiber, long-period grating (LPG) device is studied. This device consists of a single 325-µm-period LPG recorded across two sections of a single-mode B-Ge-codoped fiber—one section bare and the other coated with a 1-µm thickness of Ag. This structure generates two attenuation bands associated with the eighth and ninth cladding modes, which are spectrally close together (~60 nm). The attenuation band associated with the Ag-coated section is unaffected by changes in the refractive index of the surrounding medium and can be used to compensate for the temperature of the bare-fiber section. The sensor has a resolution of ±1.0 × 10-3 for the refractive index and ±0.3 °C for the temperature. The effect of bending on the spectral characteristics of the two attenuation bands was found to be nonlinear, with the Ag-coated LPG having the greater sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a theoretical study of polarization impairments in periodically spun fiber Raman amplifiers. Based on the Stochastic Generator approach we have derived averaged equations to calculate polarization dependent gain and mean-square gain fluctuations. We show that periodically spun fiber can work as a Raman polarizer but it suffers from increased polarization dependent gain and gain fluctuations. Unlike this, application of a depolarizer can result in suppression of polarization dependent gain and gain fluctuations. We demonstrate that it is possible to design a new fiber Raman polarizer by combining a short fiber without spin and properly chosen parameters and a long periodically spun fiber. This polarizer provides almost the same polarization pulling for all input signal states of polarization and so has very small polarization dependent gain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behavior of a temperature self-compensating, fiber, long-period grating (LPG) device is studied. This device consists of a single 325-µm-period LPG recorded across two sections of a single-mode B-Ge-codoped fiber—one section bare and the other coated with a 1-µm thickness of Ag. This structure generates two attenuation bands associated with the eighth and ninth cladding modes, which are spectrally close together (~60 nm). The attenuation band associated with the Ag-coated section is unaffected by changes in the refractive index of the surrounding medium and can be used to compensate for the temperature of the bare-fiber section. The sensor has a resolution of ±1.0 × 10-3 for the refractive index and ±0.3 °C for the temperature. The effect of bending on the spectral characteristics of the two attenuation bands was found to be nonlinear, with the Ag-coated LPG having the greater sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of coherent single frequency injection on two-section semiconductor lasers is studied numerically using a model based on a set of delay differential equations. The existence of bistability between different continuous-wave and nonstationary regimes of operation is demonstrated in the case of sufficiently large linewidth enhancement factors. © 2014 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a theoretical study of polarization impairments in periodically spun fiber Raman amplifiers. Based on the Stochastic Generator approach we have derived equations for polarization dependent gain and mean-square gain fluctuations. We show that periodically spun fiber can work as a Raman polarizer but it suffers from increased polarization dependent gain and gain fluctuations. Unlike this, application of a depolarizer can result in suppression of polarization dependent gain and gain fluctuations. We demonstrate that it is possible to design a new fiber Raman polarizer by combining a short fiber without spin and properly chosen parameters and a long periodically spun fiber. This polarizer provides almost the same polarization pulling for all input signal states of polarization and so have very small polarization dependent gain. The obtained results can be used in high-speed fiber optic communication for design of quasi-isotropic spatially and spectrally transparent media with increased Raman gain. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photovoltaic (PV) stations have been widely built in the world to utilize solar energy directly. In order to reduce the capital and operational costs, early fault diagnosis is playing an increasingly important role by enabling the long effective operation of PV arrays. This paper analyzes the terminal characteristics of faulty PV strings and arrays, and it develops a PV array fault diagnosis technique. The terminal current-voltage curve of a faulty PV array is divided into two sections, i.e., high-voltage and low-voltage fault diagnosis sections. The corresponding working points of healthy string modules and of healthy and faulty modules in an unhealthy string are then analyzed for each section. By probing into different working points, a faulty PV module can be located. The fault information is of critical importance for the maximum power point tracking and the array dynamical reconfiguration. Furthermore, the string current sensors can be eliminated, and the number of voltage sensors can be reduced by optimizing voltage sensor locations. Typical fault scenarios including monostring, multistring, and a partial shadow for a 1.6-kW 3 $times$ 3 PV array are presented and experimentally tested to confirm the effectiveness of the proposed fault diagnosis method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semiconductor lasers have the potential to address a number of critical applications in advanced telecommunications and signal processing. These include applications that require pulsed output that can be obtained from self-pulsing and mode-locked states of two-section devices with saturable absorption. Many modern applications place stringent performance requirements on the laser source, and a thorough understanding of the physical mechanisms underlying these pulsed modes of operation is therefore highly desirable. In this thesis, we present experimental measurements and numerical simulations of a variety of self-pulsation phenomena in two-section semiconductor lasers with saturable absorption. Our theoretical and numerical results will be based on rate equations for the field intensities and the carrier densities in the two sections of the device, and we establish typical parameter ranges and assess the level of agreement with experiment that can be expected from our models. For each of the physical examples that we consider, our model parameters are consistent with the physical net gain and absorption of the studied devices. Following our introductory chapter, the first system that we consider is a two-section Fabry-Pérot laser. This example serves to introduce our method for obtaining model parameters from the measured material dispersion, and it also allows us to present a detailed discussion of the bifurcation structure that governs the appearance of selfpulsations in two-section devices. In the following two chapters, we present two distinct examples of experimental measurements from dual-mode two-section devices. In each case we have found that single mode self-pulsations evolve into complex coupled dualmode states following a characteristic series of bifurcations. We present optical and mode resolved power spectra as well as a series of characteristic intensity time traces illustrating this progression for each example. Using the results from our study of a twosection Fabry-Pérot device as a guide, we find physically appropriate model parameters that provide qualitative agreement with our experimental results. We highlight the role played by material dispersion and the underlying single mode self-pulsing orbits in determining the observed dynamics, and we use numerical continuation methods to provide a global picture of the governing bifurcation structure. In our concluding chapter we summarise our work, and we discuss how the presented results can inform the development of optimised mode-locked lasers for performance applications in integrated optics.