998 resultados para Trivial Group
Resumo:
We produce families of irreducible cyclic presentations of the trivial group. These families comprehensively answer questions about such presentations asked by Dunwoody and by Edjvet, Hammond, and Thomas. Our theorems are purely theoretical, but their derivation is based on practical computations. We explain how we chose the computations and how we deduced the theorems.
Resumo:
Let G be a Kahler group admitting a short exact sequence 1 -> N -> G -> Q -> 1 where N is finitely generated. (i) Then Q cannot be non-nilpotent solvable. (ii) Suppose in addition that Q satisfies one of the following: (a) Q admits a discrete faithful non-elementary action on H-n for some n >= 2. (b) Q admits a discrete faithful non-elementary minimal action on a simplicial tree with more than two ends. (c) Q admits a (strong-stable) cut R such that the intersection of all conjugates of R is trivial. Then G is virtually a surface group. It follows that if Q is infinite, not virtually cyclic, and is the fundamental group of some closed 3-manifold, then Q contains as a finite index subgroup either a finite index subgroup of the three-dimensional Heisenberg group or the fundamental group of the Cartesian product of a closed oriented surface of positive genus and the circle. As a corollary, we obtain a new proof of a theorem of Dimca and Suciu in Which 3-manifold groups are Kahler groups? J. Eur. Math. Soc. 11 (2009) 521-528] by taking N to be the trivial group. If instead, G is the fundamental group of a compact complex surface, and N is finitely presented, then we show that Q must contain the fundamental group of a Seifert-fibered 3-manifold as a finite index subgroup, and G contains as a finite index subgroup the fundamental group of an elliptic fibration. We also give an example showing that the relation of quasi-isometry does not preserve Kahler groups. This gives a negative answer to a question of Gromov which asks whether Kahler groups can be characterized by their asymptotic geometry.
Resumo:
Andrews and Curtis conjectured in 1965 that every balanced presentation of the trivial group can be transformed into a standard presentation by a finite sequence of elementary transformations. Recent computational work by Miasnikov and Myasnikov on this problem has been based on genetic algorithms. We show that a computational attack based on a breadth-first search of the tree of equivalent presentations is also viable, and seems to outperform that based on genetic algorithms. It allows us to extract shorter proofs (in some cases, provably shortest) and to consider the length thirteen case for two generators. We prove that, up to equivalence, there is a unique minimum potential counterexample.
Resumo:
We show that it is consistent with ZFC that the free Abelian group of cardinality c admits a topological group topology that makes it countably compact with a non-trivial convergent sequence. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Two experiments are reported which investigate the influence of ingroup and outgroup minority influence where group membership was determined according to a trivial dimension. The results of the first experiment replicate an earlier study and show that an ingroup minority has significantly more influence than an outgroup minority. In the second study the connotations associated with membership of the ingroup and outgroup (positive/negative) were experimentally manipulated. When ingroup/outgroup membership was associated with a positive/negative image respectively, the ingroup minority had the most influence. However, when ingroup/outgroup membership was associated with a negative/positive image, as predicted, an outgroup minority had more influence than an ingroup minority. These results are interpreted as supporting an intergroup analysis of minority influence processes.
Resumo:
Several forms of elliptic curves are suggested for an efficient implementation of Elliptic Curve Cryptography. However, a complete description of the group law has not appeared in the literature for most popular forms. This paper presents group law in affine coordinates for three forms of elliptic curves. With the existence of the proposed affine group laws, stating the projective group law for each form becomes trivial. This work also describes an automated framework for studying elliptic curve group law, which is applied internally when preparing this work.
Resumo:
We study the secondary structure of RNA determined by Watson-Crick pairing without pseudo-knots using Milnor invariants of links. We focus on the first non-trivial invariant, which we call the Heisenber invariant. The Heisenberg invariant, which is an integer, can be interpreted in terms of the Heisenberg group as well as in terms of lattice paths. We show that the Heisenberg invariant gives a lower bound on the number of unpaired bases in an RNA secondary structure. We also show that the Heisenberg invariant can predict allosteric structures for RNA. Namely, if the Heisenberg invariant is large, then there are widely separated local maxima (i.e., allosteric structures) for the number of Watson-Crick pairs found.
Resumo:
We consider the problem of compression via homomorphic encoding of a source having a group alphabet. This is motivated by the problem of distributed function computation, where it is known that if one is only interested in computing a function of several sources, then one can at times improve upon the compression rate required by the Slepian-Wolf bound. The functions of interest are those which could be represented by the binary operation in the group. We first consider the case when the source alphabet is the cyclic Abelian group, Zpr. In this scenario, we show that the set of achievable rates provided by Krithivasan and Pradhan [1], is indeed the best possible. In addition to that, we provide a simpler proof of their achievability result. In the case of a general Abelian group, an improved achievable rate region is presented than what was obtained by Krithivasan and Pradhan. We then consider the case when the source alphabet is a non-Abelian group. We show that if all the source symbols have non-zero probability and the center of the group is trivial, then it is impossible to compress such a source if one employs a homomorphic encoder. Finally, we present certain non-homomorphic encoders, which also are suitable in the context of function computation over non-Abelian group sources and provide rate regions achieved by these encoders.
Resumo:
We consider the problem of compression of a non-Abelian source.This is motivated by the problem of distributed function computation,where it is known that if one is only interested in computing a function of several sources, then one can often improve upon the compression rate required by the Slepian-Wolf bound. Let G be a non-Abelian group having center Z(G). We show here that it is impossible to compress a source with symbols drawn from G when Z(G) is trivial if one employs a homomorphic encoder and a typical-set decoder.We provide achievable upper bounds on the minimum rate required to compress a non-Abelian group with non-trivial center. Also, in a two source setting, we provide achievable upper bounds for compression of any non-Abelian group, using a non-homomorphic encoder.
Resumo:
Gowers, dans son article sur les matrices quasi-aléatoires, étudie la question, posée par Babai et Sos, de l'existence d'une constante $c>0$ telle que tout groupe fini possède un sous-ensemble sans produit de taille supérieure ou égale a $c|G|$. En prouvant que, pour tout nombre premier $p$ assez grand, le groupe $PSL_2(\mathbb{F}_p)$ (d'ordre noté $n$) ne posséde aucun sous-ensemble sans produit de taille $c n^{8/9}$, il y répond par la négative. Nous allons considérer le probléme dans le cas des groupes compacts finis, et plus particuliérement des groupes profinis $SL_k(\mathbb{Z}_p)$ et $Sp_{2k}(\mathbb{Z}_p)$. La premiére partie de cette thése est dédiée à l'obtention de bornes inférieures et supérieures exponentielles pour la mesure suprémale des ensembles sans produit. La preuve nécessite d'établir préalablement une borne inférieure sur la dimension des représentations non-triviales des groupes finis $SL_k(\mathbb{Z}/(p^n\mathbb{Z}))$ et $Sp_{2k}(\mathbb{Z}/(p^n\mathbb{Z}))$. Notre théoréme prolonge le travail de Landazuri et Seitz, qui considérent le degré minimal des représentations pour les groupes de Chevalley sur les corps finis, tout en offrant une preuve plus simple que la leur. La seconde partie de la thése à trait à la théorie algébrique des nombres. Un polynome monogéne $f$ est un polynome unitaire irréductible à coefficients entiers qui endengre un corps de nombres monogéne. Pour un nombre premier $q$ donné, nous allons montrer, en utilisant le théoréme de densité de Tchebotariov, que la densité des nombres premiers $p$ tels que $t^q -p$ soit monogéne est supérieure ou égale à $(q-1)/q$. Nous allons également démontrer que, quand $q=3$, la densité des nombres premiers $p$ tels que $\mathbb{Q}(\sqrt[3]{p})$ soit non monogéne est supérieure ou égale à $1/9$.
Resumo:
Marciniak and Sehgal showed that if u is a non-trivial bicyclic unit of an integral group ring then there is a bicyclic unit v such that u and v generate a non-abelian free group. A similar result does not hold for Bass cyclic units of infinite order based on non-central elements as some of them have finite order modulo the center. We prove a theorem that suggests that this is the only limitation to obtain a non-abelian free group from a given Bass cyclic unit. More precisely, we prove that if u is a Bass cyclic unit of an integral group ring ZG of a solvable and finite group G, such that u has infinite order modulo the center of U(ZG) and it is based on an element of prime order, then there is a non-abelian free group generated by a power of u and a power of a unit in ZG which is either a Bass cyclic unit or a bicyclic unit.
Resumo:
Comfort and Remus [W.W. Comfort, D. Remus, Abelian torsion groups with a pseudo-compact group topology, Forum Math. 6 (3) (1994) 323-337] characterized algebraically the Abelian torsion groups that admit a pseudocompact group topology using the Ulm-Kaplansky invariants. We show, under a condition weaker than the Generalized Continuum Hypothesis, that an Abelian torsion group (of any cardinality) admits a pseudocompact group topology if and only if it admits a countably compact group topology. Dikranjan and Tkachenko [D. Dikranjan. M. Tkachenko, Algebraic structure of small countably compact Abelian groups, Forum Math. 15 (6) (2003) 811-837], and Dikranjan and Shakhmatov [D. Dikranjan. D. Shakhmatov, Forcing hereditarily separable compact-like group topologies on Abelian groups, Topology Appl. 151 (1-3) (2005) 2-54] showed this equivalence for groups of cardinality not greater than 2(c). We also show, from the existence of a selective ultrafilter, that there are countably compact groups without non-trivial convergent sequences of cardinality kappa(omega), for any infinite cardinal kappa. In particular, it is consistent that for every cardinal kappa there are countably compact groups without non-trivial convergent sequences whose weight lambda has countable cofinality and lambda > kappa. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In the present thesis, we study quantization of classical systems with non-trivial phase spaces using the group-theoretical quantization technique proposed by Isham. Our main goal is a better understanding of global and topological aspects of quantum theory. In practice, the group-theoretical approach enables direct quantization of systems subject to constraints and boundary conditions in a natural and physically transparent manner -- cases for which the canonical quantization method of Dirac fails. First, we provide a clarification of the quantization formalism. In contrast to prior treatments, we introduce a sharp distinction between the two group structures that are involved and explain their physical meaning. The benefit is a consistent and conceptually much clearer construction of the Canonical Group. In particular, we shed light upon the 'pathological' case for which the Canonical Group must be defined via a central Lie algebra extension and emphasise the role of the central extension in general. In addition, we study direct quantization of a particle restricted to a half-line with 'hard wall' boundary condition. Despite the apparent simplicity of this example, we show that a naive quantization attempt based on the cotangent bundle over the half-line as classical phase space leads to an incomplete quantum theory; the reflection which is a characteristic aspect of the 'hard wall' is not reproduced. Instead, we propose a different phase space that realises the necessary boundary condition as a topological feature and demonstrate that quantization yields a suitable quantum theory for the half-line model. The insights gained in the present special case improve our understanding of the relation between classical and quantum theory and illustrate how contact interactions may be incorporated.
Resumo:
This experiment examines ingroup and outgroup minority influence when group membership was determined by a trivial categorization. The results show that ingroup minorities had more public influence than outgroup minorities when the categorization was trivial and when subjects also believed that they were similar to their ingroup. However, no differences were found when group membership was not associated with similarity. These results are interpreted as supporting the social identification model of social influence.