1000 resultados para Triatomic systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A scale independent approach that was proposed in [1], valid for weakly bound three-boson systems, is used to predict that the three-body molecular system 4He2-7Li supports an Efimov state [2] with binding energy close to 2.31 mK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural scales determine the physics of quantum few-body systems with short-range interactions. Thus, the scaling limit is found when the ratio between the scattering length and the interaction range tends to infinity, while the ratio between the physical scales are kept fixed. From the formal point of view, the relation of the scaling limit and the renormalization aspects of a few-body model with a zero-range interaction, through the derivation of subtracted three-body T-matrix equations that are renormalization-group invariant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The usefulness of a scale-independent approach to identify Efimov states in three-body systems is shown by comparing such an approach with a realistic calculation in the case of three helium atoms. We show that the scaling limit is realized in practice in this case, and suggest its application to study other similar systems, including the case where two kinds of atoms are mixed. We also consider the observed large scattering length of the Rb-87 dimer to estimate the critical value of the ground-state energy of the corresponding trimer (greater than or equal to 1.5 mK), in order to allow for one Efimov state above the ground state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mean-square radii of the triatomic molecules 4He 3, 4He 2- 6Li, 4He 2- 7Li, and 4He 2- 23Na were calculated using a renormalized three-body model with a pairwise Dirac-δ interaction, having as physical inputs only the values of the binding energies of the diatomic and triatomic molecules. Molecular three-body systems with bound subsystems were considered. The resultant data were analyzed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A planar polynomial differential system has a finite number of limit cycles. However, finding the upper bound of the number of limit cycles is an open problem for the general nonlinear dynamical systems. In this paper, we investigated a class of Liénard systems of the form x'=y, y'=f(x)+y g(x) with deg f=5 and deg g=4. We proved that the related elliptic integrals of the Liénard systems have at most three zeros including multiple zeros, which implies that the number of limit cycles bifurcated from the periodic orbits of the unperturbed system is less than or equal to 3.