989 resultados para Tree-like Decomposition
Resumo:
Counselling children often requires the use of supplementary strategies in order to interest and engage the child in the therapeutic process. One such strategy is the Metaphorical Fruit Tree (MFT); an art metaphor suited to exploring and developing self-concept. Quantitative and qualitative data was used to explore the relationships between children’s ability to use metaphor, age, gender, and level of emotional competence (N = 58). Quantitative and qualitative analyses revealed a significant negative relationship between self-reported emotional competence and ability to use the MFT. It is proposed that children rely on different processes to understand self and as children’s ability to cognitively report on their emotional capabilities via the Emotional Competence Questionnaire (ECQ) increases, their ability to report creatively on those capabilities via the MFT is undermined. It is suggested that the MFT may be used, via creative processes and as an alternative to cognitive processes, to increase understanding and awareness of intrapersonal and interpersonal concepts of self in the child during counselling.
Resumo:
* The authors thank the “Swiss National Science Foundation” for its support.
Resumo:
The most common software analysis tools available for measuring fluorescence images are for two-dimensional (2D) data that rely on manual settings for inclusion and exclusion of data points, and computer-aided pattern recognition to support the interpretation and findings of the analysis. It has become increasingly important to be able to measure fluorescence images constructed from three-dimensional (3D) datasets in order to be able to capture the complexity of cellular dynamics and understand the basis of cellular plasticity within biological systems. Sophisticated microscopy instruments have permitted the visualization of 3D fluorescence images through the acquisition of multispectral fluorescence images and powerful analytical software that reconstructs the images from confocal stacks that then provide a 3D representation of the collected 2D images. Advanced design-based stereology methods have progressed from the approximation and assumptions of the original model-based stereology(1) even in complex tissue sections(2). Despite these scientific advances in microscopy, a need remains for an automated analytic method that fully exploits the intrinsic 3D data to allow for the analysis and quantification of the complex changes in cell morphology, protein localization and receptor trafficking. Current techniques available to quantify fluorescence images include Meta-Morph (Molecular Devices, Sunnyvale, CA) and Image J (NIH) which provide manual analysis. Imaris (Andor Technology, Belfast, Northern Ireland) software provides the feature MeasurementPro, which allows the manual creation of measurement points that can be placed in a volume image or drawn on a series of 2D slices to create a 3D object. This method is useful for single-click point measurements to measure a line distance between two objects or to create a polygon that encloses a region of interest, but it is difficult to apply to complex cellular network structures. Filament Tracer (Andor) allows automatic detection of the 3D neuronal filament-like however, this module has been developed to measure defined structures such as neurons, which are comprised of dendrites, axons and spines (tree-like structure). This module has been ingeniously utilized to make morphological measurements to non-neuronal cells(3), however, the output data provide information of an extended cellular network by using a software that depends on a defined cell shape rather than being an amorphous-shaped cellular model. To overcome the issue of analyzing amorphous-shaped cells and making the software more suitable to a biological application, Imaris developed Imaris Cell. This was a scientific project with the Eidgenössische Technische Hochschule, which has been developed to calculate the relationship between cells and organelles. While the software enables the detection of biological constraints, by forcing one nucleus per cell and using cell membranes to segment cells, it cannot be utilized to analyze fluorescence data that are not continuous because ideally it builds cell surface without void spaces. To our knowledge, at present no user-modifiable automated approach that provides morphometric information from 3D fluorescence images has been developed that achieves cellular spatial information of an undefined shape (Figure 1). We have developed an analytical platform using the Imaris core software module and Imaris XT interfaced to MATLAB (Mat Works, Inc.). These tools allow the 3D measurement of cells without a pre-defined shape and with inconsistent fluorescence network components. Furthermore, this method will allow researchers who have extended expertise in biological systems, but not familiarity to computer applications, to perform quantification of morphological changes in cell dynamics.
Resumo:
Service robots that operate in human environments will accomplish tasks most efficiently and least disruptively if they have the capability to mimic and understand the motion patterns of the people in their workspace. This work demonstrates how a robot can create a humancentric navigational map online, and that this map re ects changes in the environment that trigger altered motion patterns of people. An RGBD sensor mounted on the robot is used to detect and track people moving through the environment. The trajectories are clustered online and organised into a tree-like probabilistic data structure which can be used to detect anomalous trajectories. A costmap is reverse engineered from the clustered trajectories that can then inform the robot's onboard planning process. Results show that the resultant paths taken by the robot mimic expected human behaviour and can allow the robot to respond to altered human motion behaviours in the environment.
Resumo:
We report on the comparative study of magnetotransport properties of large-area vertical few-layer graphene networks with different morphologies, measured in a strong (up to 10 T) magnetic field over a wide temperature range. The petal-like and tree-like graphene networks grown by a plasma enhanced CVD process on a thin (500 nm) silicon oxide layer supported by a silicon wafer demonstrate a significant difference in the resistance-magnetic field dependencies at temperatures ranging from 2 to 200 K. This behaviour is explained in terms of the effect of electron scattering at ultra-long reactive edges and ultra-dense boundaries of the graphene nanowalls. Our results pave a way towards three-dimensional vertical graphene-based magnetoelectronic nanodevices with morphology-tuneable anisotropic magnetic properties. © The Royal Society of Chemistry 2013.
Resumo:
INTRODUCTION Cadaveric studies have previously documented typical patterns of venous drainage within vertebral bodies (VBs) [1,2,3], comprised primarily of the basivertebral vein, a planar tree like structure at the mid-height of the VB. These studies, however, are limited in the number of samples available, and so have not examined any potential differences in this anatomy in conditions such as scoliosis. MRI is able to create 3D images of soft tissue structures in the spine, including the basivertebral vein without the use of contrast. As a non-invasive imaging technique this opens up the possibility of examining the venous network in multiple VBs within the same subject, in healthy controls as well as in subjects with abnormal anatomy such as adolescent idiopathic scoliosis (AIS). CONCLUSIONS High resolution MRI scans allow in vivo quantification of the vertebral venous system at multiple levels on healthy and scoliotic populations for the first time. The length of the basivertebral vein was seen to have a significant bias to the right hand side of the VB in both healthy and AIS adolescents. The spatial pattern of this vein showed large variations in branching both within and across individuals.
Resumo:
In visual object detection and recognition, classifiers have two interesting characteristics: accuracy and speed. Accuracy depends on the complexity of the image features and classifier decision surfaces. Speed depends on the hardware and the computational effort required to use the features and decision surfaces. When attempts to increase accuracy lead to increases in complexity and effort, it is necessary to ask how much are we willing to pay for increased accuracy. For example, if increased computational effort implies quickly diminishing returns in accuracy, then those designing inexpensive surveillance applications cannot aim for maximum accuracy at any cost. It becomes necessary to find trade-offs between accuracy and effort. We study efficient classification of images depicting real-world objects and scenes. Classification is efficient when a classifier can be controlled so that the desired trade-off between accuracy and effort (speed) is achieved and unnecessary computations are avoided on a per input basis. A framework is proposed for understanding and modeling efficient classification of images. Classification is modeled as a tree-like process. In designing the framework, it is important to recognize what is essential and to avoid structures that are narrow in applicability. Earlier frameworks are lacking in this regard. The overall contribution is two-fold. First, the framework is presented, subjected to experiments, and shown to be satisfactory. Second, certain unconventional approaches are experimented with. This allows the separation of the essential from the conventional. To determine if the framework is satisfactory, three categories of questions are identified: trade-off optimization, classifier tree organization, and rules for delegation and confidence modeling. Questions and problems related to each category are addressed and empirical results are presented. For example, related to trade-off optimization, we address the problem of computational bottlenecks that limit the range of trade-offs. We also ask if accuracy versus effort trade-offs can be controlled after training. For another example, regarding classifier tree organization, we first consider the task of organizing a tree in a problem-specific manner. We then ask if problem-specific organization is necessary.
Resumo:
The coding gain in subband coding, a popular technique for achieving signal compression, depends on how the input signal spectrum is decomposed into subbands. The optimality of such decomposition is conventionally addressed by designing appropriate filter banks. The issue of optimal decomposition of the input spectrum is addressed by choosing the set of band that, for a given number of bands, will achieve maximum coding gain. A set of necessary conditions for such optimality is derived, and an algorithm to determine the optimal band edges is then proposed. These band edges along with ideal filters, achieve the upper bound of coding gain for a given number of bands. It is shown that with ideal filters, as well as with realizable filters for some given effective length, such a decomposition system performs better than the conventional nonuniform binary tree-structured decomposition in some cases for AR sources as well as images
Restoration of images and 3D data to higher resolution by deconvolution with sparsity regularization
Resumo:
Image convolution is conventionally approximated by the LTI discrete model. It is well recognized that the higher the sampling rate, the better is the approximation. However sometimes images or 3D data are only available at a lower sampling rate due to physical constraints of the imaging system. In this paper, we model the under-sampled observation as the result of combining convolution and subsampling. Because the wavelet coefficients of piecewise smooth images tend to be sparse and well modelled by tree-like structures, we propose the L0 reweighted-L2 minimization (L0RL2 ) algorithm to solve this problem. This promotes model-based sparsity by minimizing the reweighted L2 norm, which approximates the L0 norm, and by enforcing a tree model over the weights. We test the algorithm on 3 examples: a simple ring, the cameraman image and a 3D microscope dataset; and show that good results can be obtained. © 2010 IEEE.
Resumo:
The present paper considers the problem of autonomous synchronization of attitudes in a swarm of spacecraft. Building upon our recent results on consensus on manifolds, we model the spacecraft as particles on SO(3) and drive these particles to a common point in SO(3). Unlike the Euler angle or quaternion descriptions, this model suffers no singularities nor double-points. Our approach is fully cooperative and autonomous: we use no leader nor external reference. We present two types of control laws, in terms of applied control torques, that globally drive the swarm towards attitude synchronization: one that requires tree-like or all-to-all inter-satellite communication (most efficient) and one that works with nearly arbitrary communication (most robust).
Resumo:
There are approximately 7000 languages spoken in the world today. This diversity reflects the legacy of thousands of years of cultural evolution. How far back we can trace this history depends largely on the rate at which the different components of language evolve. Rates of lexical evolution are widely thought to impose an upper limit of 6000-10,000 years on reliably identifying language relationships. In contrast, it has been argued that certain structural elements of language are much more stable. Just as biologists use highly conserved genes to uncover the deepest branches in the tree of life, highly stable linguistic features hold the promise of identifying deep relationships between the world's languages. Here, we present the first global network of languages based on this typological information. We evaluate the relative evolutionary rates of both typological and lexical features in the Austronesian and Indo-European language families. The first indications are that typological features evolve at similar rates to basic vocabulary but their evolution is substantially less tree-like. Our results suggest that, while rates of vocabulary change are correlated between the two language families, the rates of evolution of typological features and structural subtypes show no consistent relationship across families.
Resumo:
In this paper we consider the structure of dynamically evolving networks modelling information and activity moving across a large set of vertices. We adopt the communicability concept that generalizes that of centrality which is defined for static networks. We define the primary network structure within the whole as comprising of the most influential vertices (both as senders and receivers of dynamically sequenced activity). We present a methodology based on successive vertex knockouts, up to a very small fraction of the whole primary network,that can characterize the nature of the primary network as being either relatively robust and lattice-like (with redundancies built in) or relatively fragile and tree-like (with sensitivities and few redundancies). We apply these ideas to the analysis of evolving networks derived from fMRI scans of resting human brains. We show that the estimation of performance parameters via the structure tests of the corresponding primary networks is subject to less variability than that observed across a very large population of such scans. Hence the differences within the population are significant.