924 resultados para Translation Invariance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The HMAX model has recently been proposed by Riesenhuber & Poggio as a hierarchical model of position- and size-invariant object recognition in visual cortex. It has also turned out to model successfully a number of other properties of the ventral visual stream (the visual pathway thought to be crucial for object recognition in cortex), and particularly of (view-tuned) neurons in macaque inferotemporal cortex, the brain area at the top of the ventral stream. The original modeling study only used ``paperclip'' stimuli, as in the corresponding physiology experiment, and did not explore systematically how model units' invariance properties depended on model parameters. In this study, we aimed at a deeper understanding of the inner workings of HMAX and its performance for various parameter settings and ``natural'' stimulus classes. We examined HMAX responses for different stimulus sizes and positions systematically and found a dependence of model units' responses on stimulus position for which a quantitative description is offered. Interestingly, we find that scale invariance properties of hierarchical neural models are not independent of stimulus class, as opposed to translation invariance, even though both are affine transformations within the image plane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human object recognition is generally considered to tolerate changes of the stimulus position in the visual field. A number of recent studies, however, have cast doubt on the completeness of translation invariance. In a new series of experiments we tried to investigate whether positional specificity of short-term memory is a general property of visual perception. We tested same/different discrimination of computer graphics models that were displayed at the same or at different locations of the visual field, and found complete translation invariance, regardless of the similarity of the animals and irrespective of direction and size of the displacement (Exp. 1 and 2). Decisions were strongly biased towards same decisions if stimuli appeared at a constant location, while after translation subjects displayed a tendency towards different decisions. Even if the spatial order of animal limbs was randomized ("scrambled animals"), no deteriorating effect of shifts in the field of view could be detected (Exp. 3). However, if the influence of single features was reduced (Exp. 4 and 5) small but significant effects of translation could be obtained. Under conditions that do not reveal an influence of translation, rotation in depth strongly interferes with recognition (Exp. 6). Changes of stimulus size did not reduce performance (Exp. 7). Tolerance to these object transformations seems to rely on different brain mechanisms, with translation and scale invariance being achieved in principle, while rotation invariance is not.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Full Text / Article complet

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Full Text / Article complet

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We provide a representation theorem for risk measures satisfying (i) monotonicity; (ii) positive homogeneity; and (iii) translation invariance. As a simple corollary to our theorem, we obtain the usual representation of coherent risk measures (i.e., risk measures that are, in addition, sub-additive; see Artzner et al. [2]).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stimuli outside classical receptive fields have been shown to exert significant influence over the activities of neurons in primary visual cortexWe propose that contextual influences are used for pre-attentive visual segmentation, in a new framework called segmentation without classification. This means that segmentation of an image into regions occurs without classification of features within a region or comparison of features between regions. This segmentation framework is simpler than previous computational approaches, making it implementable by V1 mechanisms, though higher leve l visual mechanisms are needed to refine its output. However, it easily handles a class of segmentation problems that are tricky in conventional methods. The cortex computes global region boundaries by detecting the breakdown of homogeneity or translation invariance in the input, using local intra-cortical interactions mediated by the horizontal connections. The difference between contextual influences near and far from region boundaries makes neural activities near region boundaries higher than elsewhere, making boundaries more salient for perceptual pop-out. This proposal is implemented in a biologically based model of V1, and demonstrated using examples of texture segmentation and figure-ground segregation. The model performs segmentation in exactly the same neural circuit that solves the dual problem of the enhancement of contours, as is suggested by experimental observations. Its behavior is compared with psychophysical and physiological data on segmentation, contour enhancement, and contextual influences. We discuss the implications of segmentation without classification and the predictions of our V1 model, and relate it to other phenomena such as asymmetry in visual search.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stimuli outside classical receptive fields significantly influence the neurons' activities in primary visual cortex. We propose that such contextual influences are used to segment regions by detecting the breakdown of homogeneity or translation invariance in the input, thus computing global region boundaries using local interactions. This is implemented in a biologically based model of V1, and demonstrated in examples of texture segmentation and figure-ground segregation. By contrast with traditional approaches, segmentation occurs without classification or comparison of features within or between regions and is performed by exactly the same neural circuit responsible for the dual problem of the grouping and enhancement of contours.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the (lambda/4!)phi(4) massless scalar field theory in a four-dimensional Euclidean space, where all but one of the coordinates are unbounded. We are considering Dirichlet boundary conditions in two hyperplanes, breaking the translation invariance of the system. We show how to implement the perturbative renormalization up to two-loop level of the theory. First, analyzing the full two and four-point functions at the one-loop level, we show that the bulk counterterms are sufficient to render the theory finite. Meanwhile, at the two-loop level, we must also introduce surface counterterms in the bare Lagrangian in order to make finite the full two and also four-point Schwinger functions. (c) 2006 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several tests for the comparison of different groups in the randomized complete block design exist. However, there is a lack of robust estimators for the location difference between one group and all the others on the original scale. The relative marginal effects are commonly used in this situation, but they are more difficult to interpret and use by less experienced people because of the different scale. In this paper two nonparametric estimators for the comparison of one group against the others in the randomized complete block design will be presented. Theoretical results such as asymptotic normality, consistency, translation invariance, scale preservation, unbiasedness, and median unbiasedness are derived. The finite sample behavior of these estimators is derived by simulations of different scenarios. In addition, possible confidence intervals with these estimators are discussed and their behavior derived also by simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human object recognition is considered to be largely invariant to translation across the visual field. However, the origin of this invariance to positional changes has remained elusive, since numerous studies found that the ability to discriminate between visual patterns develops in a largely location-specific manner, with only a limited transfer to novel visual field positions. In order to reconcile these contradicting observations, we traced the acquisition of categories of unfamiliar grey-level patterns within an interleaved learning and testing paradigm that involved either the same or different retinal locations. Our results show that position invariance is an emergent property of category learning. Pattern categories acquired over several hours at a fixed location in either the peripheral or central visual field gradually become accessible at new locations without any position-specific feedback. Furthermore, categories of novel patterns presented in the left hemifield are distinctly faster learnt and better generalized to other locations than those learnt in the right hemifield. Our results suggest that during learning initially position-specific representations of categories based on spatial pattern structure become encoded in a relational, position-invariant format. Such representational shifts may provide a generic mechanism to achieve perceptual invariance in object recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extension of the uniform invariance principle for ordinary differential equations with finite delay is developed. The uniform invariance principle allows the derivative of the auxiliary scalar function V to be positive in some bounded sets of the state space while the classical invariance principle assumes that. V <= 0. As a consequence, the uniform invariance principle can deal with a larger class of problems. The main difficulty to prove an invariance principle for functional differential equations is the fact that flows are defined on an infinite dimensional space and, in such spaces, bounded solutions may not be precompact. This difficulty is overcome by imposing the vector field taking bounded sets into bounded sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We searched for a sidereal modulation in the MINOS far detector neutrino rate. Such a signal would be a consequence of Lorentz and CPT violation as described by the standard-model extension framework. It also would be the first detection of a perturbative effect to conventional neutrino mass oscillations. We found no evidence for this sidereal signature, and the upper limits placed on the magnitudes of the Lorentz and CPT violating coefficients describing the theory are an improvement by factors of 20-510 over the current best limits found by using the MINOS near detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of having a gauge fixing term in the effective Lagrangian that is not a quadratic expression has been explored in spin-two theories so as to have a propagator that is both traceless and transverse. We first show how this same approach can be used in spontaneously broken gauge theories as an alternate to the 't Hooft gauge fixing which avoids terms quadratic in the scalar fields. This ""nonquadratic"" gauge fixing in the effective action results in two complex fermionic and one real bosonic ghost field. A global gauge invariance involving a fermionic gauge parameter, analogous to the usual Becchi-Rouet-Stora-Tyutin invariance, is present in this effective action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A search for a sidereal modulation in the MINOS near detector neutrino data was performed. If present, this signature could be a consequence of Lorentz and CPT violation as predicted by the effective field theory called the standard-model extension. No evidence for a sidereal signal in the data set was found, implying that there is no significant change in neutrino propagation that depends on the direction of the neutrino beam in a sun-centered inertial frame. Upper limits on the magnitudes of the Lorentz and CPT violating terms in the standard-model extension lie between 10(-4) and 10(-2) of the maximum expected, assuming a suppression of these signatures by a factor of 10(-17).