987 resultados para Total Maximum Daily Load Program (Ill.)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"IEPA/BOW/03-013"--Cover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The establishment of a Total Maximum Daily Load sets the pollutant reduction goal necessary to improve impaired waters. It determines the load, or quantity of any given pollutant that can be allowed in a particular water body. A TDML must consider all potential sources of pollutants whether point or nonpoint. It also takes into account a margin of safety, which reflects scientific uncertainty, as well as the effects of seasonal variation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"IEPA/BOW/02-014"--Cover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this report is to fulfill the requirements set forth in Section 303(d) of the Federal Clean Water Act (CWA) and the Water Quality Planning and Management regulation at 40 CFR Part 130 for the year 2002 [and to] inform the public about the Total Maximum Daily Load (TMDL) program process. This report is submitted to the USEPA for review and approval of Illinois' list of water quality limited waters. It provides the state's supporting documentation required by 40 CFR Part 130.7 and rationale in fulfilling Section 303(d) requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Dry Run Creek Watershed received a biological impairment in 2002 after sampling conducted by the Department of Natural Resources revealed a lack in the diversity and abundance of aquatic life along a 2.8 mile reach of stream along the Southwest Branch. Among the primary stressors identified were hydrologic change, increased stormsewer inputs, lack of available habitat, and sedimentation. Goals put forth by the Watershed Management Plan and the preliminary Total Maximum Daily Load (TMDL) study center around the reduction in storm sewer inputs. The goal set forth by the TMDL is the reduction of connected impervious surface (CIS) to 10% in each of the creek’s subwatersheds as a surrogate for other stressors. Grant funding is being sought for the construction of two bioretention cells and a green roof to treat the first flush of runoff from a new 400 unit student housing structure and connected parking surfaces totaling 5.16 acres. In addition, a monitoring program will continue to be coordinated through a partnership with the Department of Natural Resources IOWATER program and locally led volunteer efforts which will allow us to track the progress of the watershed. Funding for administration, outreach, and assessment will be provided through existing 319 grants. Implementation of these practices will occur in phases over the course of a two year period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonpoint sources (NPS) pollution from agriculture is the leading source of water quality impairment in U.S. rivers and streams, and a major contributor to lakes, wetlands, estuaries and coastal waters (U.S. EPA 2016). Using data from a survey of farmers in Maryland, this dissertation examines the effects of a cost sharing policy designed to encourage adoption of conservation practices that reduce NPS pollution in the Chesapeake Bay watershed. This watershed is the site of the largest Total Maximum Daily Load (TMDL) implemented to date, making it an important setting in the U.S. for water quality policy. I study two main questions related to the reduction of NPS pollution from agriculture. First, I examine the issue of additionality of cost sharing payments by estimating the direct effect of cover crop cost sharing on the acres of cover crops, and the indirect effect of cover crop cost sharing on the acres of two other practices: conservation tillage and contour/strip cropping. A two-stage simultaneous equation approach is used to correct for voluntary self-selection into cost sharing programs and account for substitution effects among conservation practices. Quasi-random Halton sequences are employed to solve the system of equations for conservation practice acreage and to minimize the computational burden involved. By considering patterns of agronomic complementarity or substitution among conservation practices (Blum et al., 1997; USDA SARE, 2012), this analysis estimates water quality impacts of the crowding-in or crowding-out of private investment in conservation due to public incentive payments. Second, I connect the econometric behavioral results with model parameters from the EPA’s Chesapeake Bay Program to conduct a policy simulation on water quality effects. I expand the econometric model to also consider the potential loss of vegetative cover due to cropland incentive payments, or slippage (Lichtenberg and Smith-Ramirez, 2011). Econometric results are linked with the Chesapeake Bay Program watershed model to estimate the change in abatement levels and costs for nitrogen, phosphorus and sediment under various behavioral scenarios. Finally, I use inverse sampling weights to derive statewide abatement quantities and costs for each of these pollutants, comparing these with TMDL targets for agriculture in Maryland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Para implementação e operacionalização da política brasileira de recursos hídricos, é imprescindível o uso de ferramentas de planejamento que considerem o efeito de todas as atividades ou processos que causam ou contribuem para a degradação da qualidade de um corpo d'água. Neste sentido, aplicou-se o processo TMDL (total maximum daily load), desenvolvido pela Agência de Proteção Ambiental dos Estados Unidos (EPA), para o P, na área de drenagem de contribuição ao futuro reservatório Piraquara II, bacia hidrográfica do rio Piraquara, Paraná. O processo TMDL determina a quantidade máxima de cargas de um poluente que um corpo d'água pode receber sem violar os padrões estabelecidos de qualidade da água e aloca cargas deste poluente entre fontes de poluição pontuais e difusas. No presente estudo, utilizou-se o método TMDL, com o objetivo de demonstrar ser ele uma ferramenta útil no processo de gestão dos recursos hídricos. Simularam-se cenários de uso do solo, por meio de modelagem matemática, até obter-se uma concentração de P total no reservatório abaixo da faixa limite para ocorrência de eutrofização, de 0,025 a 0,10 mg L-1, estabelecida no estudo. Realizou-se uma simulação de uso atual do solo, visando prever a condição inicial de qualidade da água no corpo d'água, na qual a concentração de P total no reservatório resultante não atendeu ao padrão estabelecido. Procedeu-se a uma segunda simulação com adoção das medidas de controle, recomposição de mata ciliar e plantio direto, para reduzir a exportação de carga de P total da bacia. Obteve-se uma melhoria na qualidade da água do reservatório, indicando que as medidas adotadas foram suficientes para atingir o padrão estabelecido, o que demonstra a aplicabilidade do método.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silver Creek is a warm water stream resource located in one of the most intensely cropped portions of Clayton County. The stream has been included on Iowa’s 303(d) list of impaired waters since 2002. Aquatic life, which should be present in Silver Creek, isn’t there. According to the Draft Total Maximum Daily Load (TMDL) for Silver Creek, the primary nonpoint pollution sources are soil erosion from agricultural land uses and direct deposition of ammonia by livestock with access to the stream. The Clayton Soil & Water Conservation District has begun efforts to remove Silver Creek from the impaired waters list. The District has promoted stream corridor and sinkhole protection, and the installation of buffer practices along Silver Creek and its tributaries. Conservation practices have been targeted to crop fields to reduce sediment delivery to the stream. A series of news articles, newsletters, and field days have been utilized to increase public understanding of water quality issues. Landowner interest has outweighed available cost share resources. Additional financial support will allow the project to build upon its early successes, to further address the identified impairments, and to respond to a long list of landowners that are interested in conservation work on their farms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Williamson Pond is a 26-acre publicly owned lake located about 2 miles east of the town of Williamson, in Lucas County. It has a watershed area of 1,499 acres. It has been managed since 1976 by the Lucas County Conservation Board (while still under state ownership) for fishing, boating, hunting, picnicking and other passive uses. Designated uses are Class AI, primary contact, and Class B (LW) aquatic life. Williamson Pond is on the 2004 EPA 303(d) List of Impaired Waters. A Total Maximum Daily Load (TMDL) for turbidity and nutrients at Williamson Pond was prepared by IDNR in 2005 and approved by EPA in 2006. The TMDL set reduction targets for both suspended sediment and phosphorus. The Williamson Pond Watershed Management Plan has provided the local work group and partners with information to develop and implement strategies to improve and protect water quality. These strategies are based on a three phase approach that will ultimately lead the removal of Williamson Pond from the Impaired Waters List. The goals identified in this proposal (Phase I) will reduce sediment and phosphorus delivery by 453 tons and 589 pounds annually. The Lucas County SWCD has and will continue to provide leadership on the Williamson Pond Project and has secured the partnerships necessary to address water quality problems and hired a part-time project coordinator to manage, implement, and oversee all activities pertaining to this proposal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silver Creek is a warm water stream resource located in one of the most intensely cropped portions of Clayton County. The stream has been included on Iowa’s 303(d) list of impaired waters since 2002. Aquatic life, which should be present in Silver Creek, isn’t there. According to the Draft Total Maximum Daily Load (TMDL) for Silver Creek, the primary nonpoint pollution sources are soil erosion from agricultural land uses and direct deposition of ammonia by livestock with access to the stream. The Clayton Soil & Water Conservation District has begun efforts to remove Silver Creek from the impaired waters list. The District has promoted stream corridor and sinkhole protection, and the installation of buffer practices along Silver Creek and its tributaries. Conservation practices have been targeted to crop fields to reduce sediment delivery to the stream. A series of news articles, newsletters, and field days have been utilized to increase public understanding of water quality issues. Landowner interest has outweighed available cost share resources. Additional financial support will allow the project to build upon its early successes, to further address the identified impairments, and to respond to a long list of landowners that are interested in conservation work on their farms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tuttle Lake Watershed is approximately 125,000 acres and Tuttle Lake itself is 2,270 acres; 5,609 acres of the watershed lies in Iowa territory within Emmet County. It is a sub-watershed of the larger East Fork Des Moines River Watershed, also referred to as Hydrologic Unit Code 07100003. For the purpose of this document, grant money is only being applied for the project implementation in the Iowa portion of the Tuttle Lake Watershed. Tuttle Lake was placed on the 2002 EPA 303(d) Impaired Waters List due to a “very large population of suspended algae and very high levels of inorganic turbidity.” In 2004, the Iowa Department of Natural Resources (IDNR) completed a Total Maximum Daily Load (TMDL) study on Tuttle Lake and found excess sediment and phosphorus levels being the primary pollutants causing the algae and turbidity impairment. Although two point sources were located in Minnesota, IDNR determined that the influx of nutrients is likely from agricultural runoff and re-suspension of lake sediment. The condition of Tuttle Lake is such that the reduction of sediment, nutrients [phosphorus and nitrogen] and pathogens is the primary objective. To achieve that objective, wetlands will be constructed in this first phase to reduce the delivery of nitrogen, phosphorus, and sediment to Tuttle Lake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A water quality model was developed to analyze the impact of hydrological events on mercury contamination of the Upper East Fork Poplar Creek, Tennessee. The model simulates surface and subsurface hydrology and transport (MIKE SHE and MIKE 11) and it is coupled with the reactive transport of sediments and mercury (ECOLAB). The model was used to simulate the distribution of mercury contamination in the water and sediments as a function of daily hydrological events. Results from the model show a high correlation between suspended solids and mercury in the water due to the affinity of mercury with suspended organics. The governing parameters for the distribution of total suspended solids and mercury contamination were the critical velocity of the stream for particle resuspension, the rates of resuspension and production of particles, settling velocity, soil-water partition coefficient, and desorption rate of mercury in the water. Flow and load duration curves at the watershed exit were used to calibrate the model and to determine the impact of hydrological events on the total maximum daily load at Station 17. The results confirmed the strong link between hydrology and mercury transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To better address stream impairments due to excess nitrogen and phosphorus and to accomplish the goals of the Clean Water Act, the U.S. Environmental Protection Agency (EPA) is requiring states to develop numeric nutrient criteria. An assessment of nutrient concentrations in streams on the Delmarva Peninsula showed that nutrient levels are mostly higher than numeric criteria derived by EPA for the Eastern Coastal Plain, indicating widespread water quality degradation. Here, various approaches were used to derive numeric nutrient criteria from a set of 52 streams sampled across Delmarva. Results of the percentile and y-intercept methods were similar to those obtained elsewhere. Downstream protection values show that if numeric nutrient criteria were implemented for Delmarva streams they would be protective of the Choptank River Estuary, meeting the goals of the Chesapeake Bay Total Maximum Daily Load (TMDL).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early water resources modeling efforts were aimed mostly at representing hydrologic processes, but the need for interdisciplinary studies has led to increasing complexity and integration of environmental, social, and economic functions. The gradual shift from merely employing engineering-based simulation models to applying more holistic frameworks is an indicator of promising changes in the traditional paradigm for the application of water resources models, supporting more sustainable management decisions. This dissertation contributes to application of a quantitative-qualitative framework for sustainable water resources management using system dynamics simulation, as well as environmental systems analysis techniques to provide insights for water quality management in the Great Lakes basin. The traditional linear thinking paradigm lacks the mental and organizational framework for sustainable development trajectories, and may lead to quick-fix solutions that fail to address key drivers of water resources problems. To facilitate holistic analysis of water resources systems, systems thinking seeks to understand interactions among the subsystems. System dynamics provides a suitable framework for operationalizing systems thinking and its application to water resources problems by offering useful qualitative tools such as causal loop diagrams (CLD), stock-and-flow diagrams (SFD), and system archetypes. The approach provides a high-level quantitative-qualitative modeling framework for "big-picture" understanding of water resources systems, stakeholder participation, policy analysis, and strategic decision making. While quantitative modeling using extensive computer simulations and optimization is still very important and needed for policy screening, qualitative system dynamics models can improve understanding of general trends and the root causes of problems, and thus promote sustainable water resources decision making. Within the system dynamics framework, a growth and underinvestment (G&U) system archetype governing Lake Allegan's eutrophication problem was hypothesized to explain the system's problematic behavior and identify policy leverage points for mitigation. A system dynamics simulation model was developed to characterize the lake's recovery from its hypereutrophic state and assess a number of proposed total maximum daily load (TMDL) reduction policies, including phosphorus load reductions from point sources (PS) and non-point sources (NPS). It was shown that, for a TMDL plan to be effective, it should be considered a component of a continuous sustainability process, which considers the functionality of dynamic feedback relationships between socio-economic growth, land use change, and environmental conditions. Furthermore, a high-level simulation-optimization framework was developed to guide watershed scale BMP implementation in the Kalamazoo watershed. Agricultural BMPs should be given priority in the watershed in order to facilitate cost-efficient attainment of the Lake Allegan's TP concentration target. However, without adequate support policies, agricultural BMP implementation may adversely affect the agricultural producers. Results from a case study of the Maumee River basin show that coordinated BMP implementation across upstream and downstream watersheds can significantly improve cost efficiency of TP load abatement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research is part of continued efforts to correlate the hydrology of East Fork Poplar Creek (EFPC) and Bear Creek (BC) with the long term distribution of mercury within the overland, subsurface, and river sub-domains. The main objective of this study was to add a sedimentation module (ECO Lab) capable of simulating the reactive transport mercury exchange mechanisms within sediments and porewater throughout the watershed. The enhanced model was then applied to a Total Maximum Daily Load (TMDL) mercury analysis for EFPC. That application used historical precipitation, groundwater levels, river discharges, and mercury concentrations data that were retrieved from government databases and input to the model. The model was executed to reduce computational time, predict flow discharges, total mercury concentration, flow duration and mercury mass rate curves at key monitoring stations under various hydrological and environmental conditions and scenarios. The computational results provided insight on the relationship between discharges and mercury mass rate curves at various stations throughout EFPC, which is important to best understand and support the management mercury contamination and remediation efforts within EFPC.