959 resultados para Topic model
A tag-based personalized item recommendation system using tensor modeling and topic model approaches
Resumo:
This research falls in the area of enhancing the quality of tag-based item recommendation systems. It aims to achieve this by employing a multi-dimensional user profile approach and by analyzing the semantic aspects of tags. Tag-based recommender systems have two characteristics that need to be carefully studied in order to build a reliable system. Firstly, the multi-dimensional correlation, called as tag assignment
Resumo:
Web APIs have gained increasing popularity in recent Web service technology development owing to its simplicity of technology stack and the proliferation of mashups. However, efficiently discovering Web APIs and the relevant documentations on the Web is still a challenging task even with the best resources available on the Web. In this paper we cast the problem of detecting the Web API documentations as a text classification problem of classifying a given Web page as Web API associated or not. We propose a supervised generative topic model called feature latent Dirichlet allocation (feaLDA) which offers a generic probabilistic framework for automatic detection of Web APIs. feaLDA not only captures the correspondence between data and the associated class labels, but also provides a mechanism for incorporating side information such as labelled features automatically learned from data that can effectively help improving classification performance. Extensive experiments on our Web APIs documentation dataset shows that the feaLDA model outperforms three strong supervised baselines including naive Bayes, support vector machines, and the maximum entropy model, by over 3% in classification accuracy. In addition, feaLDA also gives superior performance when compared against other existing supervised topic models.
Resumo:
Sentiment analysis or opinion mining aims to use automated tools to detect subjective information such as opinions, attitudes, and feelings expressed in text. This paper proposes a novel probabilistic modeling framework based on Latent Dirichlet Allocation (LDA), called joint sentiment/topic model (JST), which detects sentiment and topic simultaneously from text. Unlike other machine learning approaches to sentiment classification which often require labeled corpora for classifier training, the proposed JST model is fully unsupervised. The model has been evaluated on the movie review dataset to classify the review sentiment polarity and minimum prior information have also been explored to further improve the sentiment classification accuracy. Preliminary experiments have shown promising results achieved by JST.
Resumo:
Social media data are produced continuously by a large and uncontrolled number of users. The dynamic nature of such data requires the sentiment and topic analysis model to be also dynamically updated, capturing the most recent language use of sentiments and topics in text. We propose a dynamic Joint Sentiment-Topic model (dJST) which allows the detection and tracking of views of current and recurrent interests and shifts in topic and sentiment. Both topic and sentiment dynamics are captured by assuming that the current sentiment-topic-specific word distributions are generated according to the word distributions at previous epochs. We study three different ways of accounting for such dependency information: (1) Sliding window where the current sentiment-topic word distributions are dependent on the previous sentiment-topic-specific word distributions in the last S epochs; (2) skip model where history sentiment topic word distributions are considered by skipping some epochs in between; and (3) multiscale model where previous long- and shorttimescale distributions are taken into consideration. We derive efficient online inference procedures to sequentially update the model with newly arrived data and show the effectiveness of our proposed model on the Mozilla add-on reviews crawled between 2007 and 2011. © 2013 ACM 2157-6904/2013/12-ART5 $ 15.00.
Resumo:
Research in ubiquitous and pervasive technologies have made it possible to recognise activities of daily living through non-intrusive sensors. The data captured from these sensors are required to be classified using various machine learning or knowledge driven techniques to infer and recognise activities. The process of discovering the activities and activity-object patterns from the sensors tagged to objects as they are used is critical to recognising the activities. In this paper, we propose a topic model process of discovering activities and activity-object patterns from the interactions of low level state-change sensors. We also develop a recognition and segmentation algorithm to recognise activities and recognise activity boundaries. Experimental results we present validates our framework and shows it is comparable to existing approaches.
Resumo:
Topic modelling has been widely used in the fields of information retrieval, text mining, machine learning, etc. In this paper, we propose a novel model, Pattern Enhanced Topic Model (PETM), which makes improvements to topic modelling by semantically representing topics with discriminative patterns, and also makes innovative contributions to information filtering by utilising the proposed PETM to determine document relevance based on topics distribution and maximum matched patterns proposed in this paper. Extensive experiments are conducted to evaluate the effectiveness of PETM by using the TREC data collection Reuters Corpus Volume 1. The results show that the proposed model significantly outperforms both state-of-the-art term-based models and pattern-based models.
Resumo:
News blog hot topics are important for the information recommendation service and marketing. However, information overload and personalized management make the information arrangement more difficult. Moreover, what influences the formation and development of blog hot topics is seldom paid attention to. In order to correctly detect news blog hot topics, the paper first analyzes the development of topics in a new perspective based on W2T (Wisdom Web of Things) methodology. Namely, the characteristics of blog users, context of topic propagation and information granularity are unified to analyze the related problems. Some factors such as the user behavior pattern, network opinion and opinion leader are subsequently identified to be important for the development of topics. Then the topic model based on the view of event reports is constructed. At last, hot topics are identified by the duration, topic novelty, degree of topic growth and degree of user attention. The experimental results show that the proposed method is feasible and effective.
Resumo:
Topic modelling, such as Latent Dirichlet Allocation (LDA), was proposed to generate statistical models to represent multiple topics in a collection of documents, which has been widely utilized in the fields of machine learning and information retrieval, etc. But its effectiveness in information filtering is rarely known. Patterns are always thought to be more representative than single terms for representing documents. In this paper, a novel information filtering model, Pattern-based Topic Model(PBTM) , is proposed to represent the text documents not only using the topic distributions at general level but also using semantic pattern representations at detailed specific level, both of which contribute to the accurate document representation and document relevance ranking. Extensive experiments are conducted to evaluate the effectiveness of PBTM by using the TREC data collection Reuters Corpus Volume 1. The results show that the proposed model achieves outstanding performance.
Resumo:
This thesis targets on a challenging issue that is to enhance users' experience over massive and overloaded web information. The novel pattern-based topic model proposed in this thesis can generate high-quality multi-topic user interest models technically by incorporating statistical topic modelling and pattern mining. We have successfully applied the pattern-based topic model to both fields of information filtering and information retrieval. The success of the proposed model in finding the most relevant information to users mainly comes from its precisely semantic representations to represent documents and also accurate classification of the topics at both document level and collection level.
Resumo:
There are many popular models available for classification of documents like Naïve Bayes Classifier, k-Nearest Neighbors and Support Vector Machine. In all these cases, the representation is based on the “Bag of words” model. This model doesn't capture the actual semantic meaning of a word in a particular document. Semantics are better captured by proximity of words and their occurrence in the document. We propose a new “Bag of Phrases” model to capture this discriminative power of phrases for text classification. We present a novel algorithm to extract phrases from the corpus using the well known topic model, Latent Dirichlet Allocation(LDA), and to integrate them in vector space model for classification. Experiments show a better performance of classifiers with the new Bag of Phrases model against related representation models.
Resumo:
Thesis (Master's)--University of Washington, 2012
Resumo:
Thesis (Master's)--University of Washington, 2012
Resumo:
There is still a lack of effective paradigms and tools for analysing and discovering the contents and relationships of project knowledge contexts in the field of project management. In this paper, a new framework for extracting and representing project knowledge contexts using topic models and dynamic knowledge maps under big data environments is proposed and developed. The conceptual paradigm, theoretical underpinning, extended topic model, and illustration examples of the ontology model for project knowledge maps are presented, with further research work envisaged.
Resumo:
A large number of studies have been devoted to modeling the contents and interactions between users on Twitter. In this paper, we propose a method inspired from Social Role Theory (SRT), which assumes that a user behaves differently in different roles in the generation process of Twitter content. We consider the two most distinctive social roles on Twitter: originator and propagator, who respectively posts original messages and retweets or forwards the messages from others. In addition, we also consider role-specific social interactions, especially implicit interactions between users who share some common interests. All the above elements are integrated into a novel regularized topic model. We evaluate the proposed method on real Twitter data. The results show that our method is more effective than the existing ones which do not distinguish social roles. Copyright 2013 ACM.