995 resultados para Timonshenko’s beam functions


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Approximate solutions for the non-linear bending of thin rectangular plates are presented considering large deflections for various boundary conditions. In the case of stress-free edges, solutions are given for von Kármán's equations in terms of the stress function and the deflection of the plate. In the case of immovable edges, equations are constructed in terms of the three displacements and these are solved. The solution is given by using double series consisting of the appropriate Beam Functions which satisfy the boundary conditions. The differential equations are satisfied by using the orthogonality properties of the series. Numerical results for square plates with uniform lateral load indicate good convergence of the series solution presented here.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have recently derived a factorization formula for the Higgs-boson production cross section in the presence of a jet veto, which allows for a systematic resummation of large Sudakov logarithms of the form αn s lnm(pveto T /mH), along with the large virtual corrections known to affect also the total cross section. Here we determine the ingredients entering this formula at two-loop accuracy. Specifically, we compute the dependence on the jet-radius parameter R, which is encoded in the two-loop coefficient of the collinear anomaly, by means of a direct, fully analytic calculation in the framework of soft-collinear effective theory. We confirm the result obtained by Banfi et al. from a related calculation in QCD, and demonstrate that factorization-breaking, soft-collinear mixing effects do not arise at leading power in pveto T /mH, even for R = O(1). In addition, we extract the two-loop collinear beam functions numerically. We present detailed numerical predictions for the jet-veto cross section with partial next-to-next-to-next-to-leading logarithmic accuracy, matched to the next-to-next-to-leading order cross section in fixed-order perturbation theory. The only missing ingredients at this level of accuracy are the three-loop anomaly coefficient and the four-loop cusp anomalous dimension, whose numerical effects we estimate to be small.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In electroweak-boson production processes with a jet veto, higher-order corrections are enhanced by logarithms of the veto scale over the invariant mass of the boson system. In this paper, we resum these Sudakov logarithms at next-to-next-to-leading logarithmic accuracy and match our predictions to next-to-leading-order (NLO) fixed-order results. We perform the calculation in an automated way, for arbitrary electroweak final states and in the presence of kinematic cuts on the leptons produced in the decays of the electroweak bosons. The resummation is based on a factorization theorem for the cross sections into hard functions, which encode the virtual corrections to the boson production process, and beam functions, which describe the low-pT emissions collinear to the beams. The one-loop hard functions for arbitrary processes are calculated using the MadGraph5_aMC@NLO framework, while the beam functions are process independent. We perform the resummation for a variety of processes, in particular for W+W− pair production followed by leptonic decays of the W bosons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study singular fractal functions (SFF) were used to generate stress-strain plots for quasibrittle material like concrete and cement mortar and subsequently stress-strain plot of cement mortar obtained using SFF was used for modeling fracture process in concrete. The fracture surface of concrete is rough and irregular. The fracture surface of concrete is affected by the concrete's microstructure that is influenced by water cement ratio, grade of cement and type of aggregate 11-41. Also the macrostructural properties such as the size and shape of the specimen, the initial notch length and the rate of loading contribute to the shape of the fracture surface of concrete. It is known that concrete is a heterogeneous and quasi-brittle material containing micro-defects and its mechanical properties strongly relate to the presence of micro-pores and micro-cracks in concrete 11-41. The damage in concrete is believed to be mainly due to initiation and development of micro-defects with irregularity and fractal characteristics. However, repeated observations at various magnifications also reveal a variety of additional structures that fall between the `micro' and the `macro' and have not yet been described satisfactorily in a systematic manner [1-11,15-17]. The concept of singular fractal functions by Mosolov was used to generate stress-strain plot of cement concrete, cement mortar and subsequently the stress-strain plot of cement mortar was used in two-dimensional lattice model [28]. A two-dimensional lattice model was used to study concrete fracture by considering softening of matrix (cement mortar). The results obtained from simulations with lattice model show softening behavior of concrete and fairly agrees with the experimental results. The number of fractured elements are compared with the acoustic emission (AE) hits. The trend in the cumulative fractured beam elements in the lattice fracture simulation reasonably reflected the trend in the recorded AE measurements. In other words, the pattern in which AE hits were distributed around the notch has the same trend as that of the fractured elements around the notch which is in support of lattice model. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theoretical and experimental investigations on the near field and radiation characteristics show a fairly good agreement which justifies the TE(11)(x) mode of excitation. Eight polyrod antennas of different configurations were built and tested as functions of taper angles, straight and curved axial lengths, and frequency of excitation. It is found that the radiation patterns. cross-polarization level, beamwidth and gain could be controlled not only by the axial length and taper angles but also by shaping the axis of the polyrods in order to realize an optimum design

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new finite element is developed for free vibration analysis of high speed rotating beams using basis functions which use a linear combination of the solution of the governing static differential equation of a stiff-string and a cubic polynomial. These new shape functions depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. The natural frequencies predicted by the proposed element are compared with an element with stiff-string, cubic polynomial and quintic polynomial shape functions. It is found that the new element exhibits superior convergence compared to the other basis functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rotating beam finite element in which the interpolating shape functions are obtained by satisfying the governing static homogenous differential equation of Euler–Bernoulli rotating beams is developed in this work. The shape functions turn out to be rational functions which also depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. These rational functions yield the Hermite cubic when rotation speed becomes zero. The new element is applied for static and dynamic analysis of rotating beams. In the static case, a cantilever beam having a tip load is considered, with a radially varying axial force. It is found that this new element gives a very good approximation of the tip deflection to the analytical series solution value, as compared to the classical finite element given by the Hermite cubic shape functions. In the dynamic analysis, the new element is applied for uniform, and tapered rotating beams with cantilever and hinged boundary conditions to determine the natural frequencies, and the results compare very well with the published results given in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new rotating beam finite element is developed in which the basis functions are obtained by the exact solution of the governing static homogenous differential equation of a stiff string, which results from an approximation in the rotating beam equation. These shape functions depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. Using this new element and the Hermite cubic finite element, a convergence study of natural frequencies is performed, and it is found that the new element converges much more rapidly than the conventional Hermite cubic element for the first two modes at higher rotation speeds. The new element is also applied for uniform and tapered rotating beams to determine the natural frequencies, and the results compare very well with the published results given in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Violin strings are relatively short and stiff and are well modeled by Timoshenko beam theory. We use the static part of the homogeneous differential equation of violin strings to obtain new shape functions for the finite element analysis of rotating Timoshenko beams. For deriving the shape functions, the rotating beam is considered as a sequence of violin strings. The violin string shape functions depend on rotation speed and element position along the beam length and account for centrifugal stiffening effects as well as rotary inertia and shear deformation on dynamic characteristics of rotating Timoshenko beams. Numerical results show that the violin string basis functions perform much better than the conventional polynomials at high rotation speeds and are thus useful for turbo machine applications. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the governing equations for free vibration of a non-homogeneous rotating Timoshenko beam, having uniform cross-section, is studied using an inverse problem approach, for both cantilever and pinned-free boundary conditions. The bending displacement and the rotation due to bending are assumed to be simple polynomials which satisfy all four boundary conditions. It is found that for certain polynomial variations of the material mass density, elastic modulus and shear modulus, along the length of the beam, the assumed polynomials serve as simple closed form solutions to the coupled second order governing differential equations with variable coefficients. It is found that there are an infinite number of analytical polynomial functions possible for material mass density, shear modulus and elastic modulus distributions, which share the same frequency and mode shape for a particular mode. The derived results are intended to serve as benchmark solutions for testing approximate or numerical methods used for the vibration analysis of rotating non-homogeneous Timoshenko beams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free vibration problem of a rotating Euler-Bernoulli beam is solved with a truly meshless local Petrov-Galerkin method. Radial basis function and summation of two radial basis functions are used for interpolation. Radial basis function satisfies the Kronecker delta property and makes it simpler to apply the essential boundary conditions. Interpolation with summation of two radial basis functions increases the node carrying capacity within the sub-domain of the trial function and higher natural frequencies can be computed by selecting the complete domain as a sub-domain of the trial function. The mass and stiffness matrices are derived and numerical results for frequencies are obtained for a fixed-free beam and hinged-free beam simulating hingeless and articulated helicopter blades. Stiffness and mass distribution suitable for wind turbine blades are also considered. Results show an accurate match with existing literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GaSb 1 mu m-thick layers were grown by molecular beam epitaxy on GaAs (001). The effects of the growth conditions on the crystalline quality, surface morphology, electrical properties and optical properties were studied by double crystalline x-ray diffraction, atomic force microscopy, Hall measurement and photoluminescence spectroscopy, respectively. It was found that the surface roughness and hole mobility are highly dependent on the antimony-to-gallium flux ratios and growth temperatures. The crystalline quality, electrical properties and optical properties of GaSb layers were also studied as functions of growth rate, and it was found that a suitably low growth rate is beneficial for the crystalline quality and electrical and optical properties. Better crystal quality GaSb layers with a minimum root mean square surface roughness of 0.1 nm and good optical properties were obtained at a growth rate of 0.25 mu m h(-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the possibility of affecting the entanglement measure of 2-qubit system consisting of two photons with different fi xed frequencies but with two arbitrary linear polarizations, moving in the same direction, by the help of an applied external magnetic field. The interaction between the magnetic fi eld and the photons in our model is achieved through intermediate electrons that interact with both the photons and the magnetic fi eld. The possibility of exact theoretical analysis of this scheme is based on known exact solutions that describe the interaction of an electron subjected to an external magnetic fi eld (or a medium of electrons not interacting with each other) with a quantized field of two photons. We adapt these exact solutions to the case under consideration. Using explicit wave functions for the resulting electromagnetic fi eld, we calculate the entanglement measure of the photon beam as a function of the applied magnetic field and parameters of the electron medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A consistent Finite Element formulation was developed for four classical 1-D beam models. This formulation is based upon the solution of the homogeneous differential equation (or equations) associated with each model. Results such as the shape functions, stiffness matrices and consistent force vectors for the constant section beam were found. Some of these results were compared with the corresponding ones obtained by the standard Finite Element Method (i.e. using polynomial expansions for the field variables). Some of the difficulties reported in the literature concerning some of these models may be avoided by this technique and some numerical sensitivity analysis on this subject are presented.