940 resultados para Time-frequency analysis
Resumo:
The feasibility of detecting instability in wet spouted beds via pressure fluctuation (PF) time-series analyses was investigated. Experiments were carried out in a cylindrical Plexiglas column of diameter 150 mm with a conical base of internal angle 60 degrees, an inlet orifice diameter of 25 mm and glass beads of diameter 2.4 mm. Transducers at several axial positions measured PF time series with incremental addition of aqueous sucrose solutions of different concentrations. Liquid addition affected the spouted bed dynamics, causing irregular spouting, increased voidage in the annulus, increased fountain height, irregular annulus height, channelling, agglomeration, and adhesion of particles to the column walls. Autocorrelations indicated the appearance of periodicities in the PF signals with increasing sucrose addition. Dominant peaks in power-spectral density developed at low frequencies with changing system dynamics. The results indicate that PF signals furnish relevant information on system dynamics, useful for monitoring and control of spouted bed operations such as particle coating and drying of paste-like materials.
Resumo:
Neurological disease or dysfunction in newborn infants is often first manifested by seizures. Prolonged seizures can result in impaired neurodevelopment or even death. In adults, the clinical signs of seizures are well defined and easily recognized. In newborns, however, the clinical signs are subtle and may be absent or easily missed without constant close observation. This article describes the use of adaptive signal processing techniques for removing artifacts from newborn electroencephalogram (EEG) signals. Three adaptive algorithms have been designed in the context of EEG signals. This preprocessing is necessary before attempting a fine time-frequency analysis of EEG rhythmical activities, such as electrical seizures, corrupted by high amplitude signals. After an overview of newborn EEG signals, the authors describe the data acquisition set-up. They then introduce the basic physiological concepts related to normal and abnormal newborn EEGs and discuss the three adaptive algorithms for artifact removal. They also present time-frequency representations (TFRs) of seizure signals and discuss the estimation and modeling of the instantaneous frequency related to the main ridge of the TFR.
Resumo:
This paper demonstrates by means of joint time-frequency analysis that the acoustic noise produced by the breaking of biscuits is dependent on relative humidity and water activity. It also shows that the time-frequency coefficients calculated using the adaptive Gabor transformation algorithm is dependent on the period of time a biscuit is exposed to humidity. This is a new methodology that can be used to assess the crispness of crisp foods. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Nowadays the method based on demodulation by envelope finds wide application in industry as a technique for evaluation of bearings and other components in rotating machinery. In recent years the application of Wavelets for fault diagnosis in machinery has also obtained good development. This article demonstrates the effectiveness of the combined application of Wavelets and envelope technique (also known as HFRT High-Frequency Resonance Technique) to remove background noise from signals collected from defect bearings and identification of the characteristic frequencies of defects. A comparison of the results obtained with the isolated application of only one method against the combined technique is performed showing the increased capacity in detection of faults in rolling bearings. © (2013) Trans Tech Publications, Switzerland.
Resumo:
Carrying out information about the microstructure and stress behaviour of ferromagnetic steels, magnetic Barkhausen noise (MBN) has been used as a basis for effective non-destructive testing methods, opening new areas in industrial applications. One of the factors that determines the quality and reliability of the MBN analysis is the way information is extracted from the signal. Commonly, simple scalar parameters are used to characterize the information content, such as amplitude maxima and signal root mean square. This paper presents a new approach based on the time-frequency analysis. The experimental test case relates the use of MBN signals to characterize hardness gradients in a AISI4140 steel. To that purpose different time-frequency (TFR) and time-scale (TSR) representations such as the spectrogram, the Wigner-Ville distribution, the Capongram, the ARgram obtained from an AutoRegressive model, the scalogram, and the Mellingram obtained from a Mellin transform are assessed. It is shown that, due to nonstationary characteristics of the MBN, TFRs can provide a rich and new panorama of these signals. Extraction techniques of some time-frequency parameters are used to allow a diagnostic process. Comparison with results obtained by the classical method highlights the improvement on the diagnosis provided by the method proposed.
Resumo:
Proceedings of the Information Technology Applications in Biomedicine, Ioannina - Epirus, Greece, October 26-28, 2006
Time-frequency and time-scale characterisation of the beat-by-beat high-resolution electrocardiogram
Resumo:
Proceedings of the Sixth Portuguese Conference on Bioemedical Engineering faro, Portugal
Resumo:
This correspondence studies the formulation of members ofthe Cohen-Posch class of positive time-frequency energy distributions.Minimization of cross-entropy measures with respect to different priorsand the case of no prior or maximum entropy were considered. It isconcluded that, in general, the information provided by the classicalmarginal constraints is very limited, and thus, the final distributionheavily depends on the prior distribution. To overcome this limitation,joint time and frequency marginals are derived based on a "directioninvariance" criterion on the time-frequency plane that are directly relatedto the fractional Fourier transform.
Resumo:
In this paper, we propose features extracted from the heart rate variability (HRV) based on the first and second conditional moments of time-frequency distribution (TFD) as an additional guide for seizure detection in newborn. The features of HRV in the low frequency band (LF: 0-0.07 Hz), mid frequency band (MF: 0.07-0.15 Hz), and high frequency band (HF: 0.15-0.6 Hz) have been obtained by means of the time-frequency analysis using the modified-B distribution (MBD). Results of ongoing time-frequency research are presented. Based on our preliminary results, the first conditional moment of HRV which is also known as the mean/central frequency in the LF band and the second conditional moment of HRV which is also known as the variance/instantaneous bandwidth (IB) in the HF band can be used as a good feature to discriminate the newborn seizure from the non-seizure
Resumo:
For derived flood frequency analysis based on hydrological modelling long continuous precipitation time series with high temporal resolution are needed. Often, the observation network with recording rainfall gauges is poor, especially regarding the limited length of the available rainfall time series. Stochastic precipitation synthesis is a good alternative either to extend or to regionalise rainfall series to provide adequate input for long-term rainfall-runoff modelling with subsequent estimation of design floods. Here, a new two step procedure for stochastic synthesis of continuous hourly space-time rainfall is proposed and tested for the extension of short observed precipitation time series. First, a single-site alternating renewal model is presented to simulate independent hourly precipitation time series for several locations. The alternating renewal model describes wet spell durations, dry spell durations and wet spell intensities using univariate frequency distributions separately for two seasons. The dependence between wet spell intensity and duration is accounted for by 2-copulas. For disaggregation of the wet spells into hourly intensities a predefined profile is used. In the second step a multi-site resampling procedure is applied on the synthetic point rainfall event series to reproduce the spatial dependence structure of rainfall. Resampling is carried out successively on all synthetic event series using simulated annealing with an objective function considering three bivariate spatial rainfall characteristics. In a case study synthetic precipitation is generated for some locations with short observation records in two mesoscale catchments of the Bode river basin located in northern Germany. The synthetic rainfall data are then applied for derived flood frequency analysis using the hydrological model HEC-HMS. The results show good performance in reproducing average and extreme rainfall characteristics as well as in reproducing observed flood frequencies. The presented model has the potential to be used for ungauged locations through regionalisation of the model parameters.
Resumo:
In this work, we further extend the recently developed adaptive data analysis method, the Sparse Time-Frequency Representation (STFR) method. This method is based on the assumption that many physical signals inherently contain AM-FM representations. We propose a sparse optimization method to extract the AM-FM representations of such signals. We prove the convergence of the method for periodic signals under certain assumptions and provide practical algorithms specifically for the non-periodic STFR, which extends the method to tackle problems that former STFR methods could not handle, including stability to noise and non-periodic data analysis. This is a significant improvement since many adaptive and non-adaptive signal processing methods are not fully capable of handling non-periodic signals. Moreover, we propose a new STFR algorithm to study intrawave signals with strong frequency modulation and analyze the convergence of this new algorithm for periodic signals. Such signals have previously remained a bottleneck for all signal processing methods. Furthermore, we propose a modified version of STFR that facilitates the extraction of intrawaves that have overlaping frequency content. We show that the STFR methods can be applied to the realm of dynamical systems and cardiovascular signals. In particular, we present a simplified and modified version of the STFR algorithm that is potentially useful for the diagnosis of some cardiovascular diseases. We further explain some preliminary work on the nature of Intrinsic Mode Functions (IMFs) and how they can have different representations in different phase coordinates. This analysis shows that the uncertainty principle is fundamental to all oscillating signals.