942 resultados para Three Dimensional Graphics and Realism
Resumo:
Objective To evaluate the reliability of two- and three-dimensional ultrasonographic measurement of the thickness of the lower uterine segment (LUS) in pregnant women by transvaginal and transabdominal approaches. Methods This was a study of 30 pregnant women who bad bad at least one previous Cesarean section and were between 36 and 39 weeks` gestation, with singleton pregnancies in cephalic presentation. Sonographic examinations were performed by two observers using both 4-7-MHz transabdominal and 5-8-MHz transvaginal volumetric probes. LUS measurements were performed using two- and three-dimensional ultrasound, evaluating the entire LUS thickness transabdominally and the LUS muscular thickness transvaginally. Each observer measured the LUS four times by each method. Reliability was analyzed by comparing the mean of the absolute differences, the intraclass correlation coefficients, the 95% limits of agreement and the proportion of differences <1 mm. Results Transvaginal ultrasound provided greater reliability in LUS measurements than did transabdominal ultrasound. The use of three-dimensional ultrasound improved significantly the reliability of the LUS muscular thickness measurement obtained transvaginally. Conclusions Ultrasonographic measurement of the LUS muscular thickness transvaginally appears more reliable than does that of the entire LUS thickness transabdominally. The use of three-dimensional ultrasound should be considered to improve measurement reliability. Copyright (c) 2009 ISUOG. Published by John Wiley & Sons, Ltd.
Resumo:
The design of magnetic cores can be carried out by taking into account the optimization of different parameters in accordance with the application requirements. Considering the specifications of the fast field cycling nuclear magnetic resonance (FFC-NMR) technique, the magnetic flux density distribution, at the sample insertion volume, is one of the core parameters that needs to be evaluated. Recently, it has been shown that the FFC-NMR magnets can be built on the basis of solenoid coils with ferromagnetic cores. Since this type of apparatus requires magnets with high magnetic flux density uniformity, a new type of magnet using a ferromagnetic core, copper coils, and superconducting blocks was designed with improved magnetic flux density distribution. In this paper, the designing aspects of the magnet are described and discussed with emphasis on the improvement of the magnetic flux density homogeneity (Delta B/B-0) in the air gap. The magnetic flux density distribution is analyzed based on 3-D simulations and NMR experimental results.
Resumo:
Insect odorant receptors (ORs) comprise an enormous protein family that translates environmental chemical signals into neuronal electrical activity. These heptahelical receptors are proposed to function as ligand-gated ion channels and/or to act metabotropically as G protein-coupled receptors (GPCRs). Resolving their signalling mechanism has been hampered by the lack of tertiary structural information and primary sequence similarity to other proteins. We use amino acid evolutionary covariation across these ORs to define restraints on structural proximity of residue pairs, which permit de novo generation of three-dimensional models. The validity of our analysis is supported by the location of functionally important residues in highly constrained regions of the protein. Importantly, insect OR models exhibit a distinct transmembrane domain packing arrangement to that of canonical GPCRs, establishing the structural unrelatedness of these receptor families. The evolutionary couplings and models predict odour binding and ion conduction domains, and provide a template for rationale structure-activity dissection.
Resumo:
Reconstruction of important parameters such as femoral offset and torsion is inaccurate, when templating is based on plain x-rays. We evaluate intraoperative reproducibility of pre-operative CT-based 3D-templating in a consecutive series of 50 patients undergoing primary cementless THA through an anterior approach. Pre-operative planning was compared to a postoperative CT scan by image fusion. The implant size was correctly predicted in 100% of the stems, 94% of the cups and 88% of the heads (length). The difference between the planned and the postoperative leg length was 0.3 + 2.3 mm. Values for overall offset, femoral anteversion, cup inclination and anteversion were 1.4 mm ± 3.1, 0.6° ± 3.3°, -0.4° ± 5° and 6.9° ± 11.4°, respectively. This planning allows accurate implant size prediction. Stem position and cup inclination are accurately reproducible.
Resumo:
Macroscopic features such as volume, surface estimate, thickness and caudorostral length of the human primary visual cortex (Brodman's area 17) of 46 human brains between midgestation and 93 years were studied by means of camera lucida drawings from serial frontal sections. Individual values were best fitted by a logistic function from midgestation to adulthood and by a regression line between adulthood and old age. Allometric functions were calculated to study developmental relationships between all the features. The three-dimensional shape of area 17 was also reconstructed from the serial sections in 15 cases and correlated with the sequence of morphological events. The sulcal pattern of area 17 begins to develop around 21 weeks of gestation but remains rather simple until birth, while it becomes more convoluted, particularly in the caudal part, during the postnatal period. Until birth, a large increase in cortical thickness (about 83% of its mean adult value) and caudorostral length (69%) produces a moderate increase in cortical volume (31%) and surface estimate (40%) of area 17. After birth, the cortical volume and surface undergo their maximum growth rate, in spite of a rather small increase in cortical thickness and caudorostral length. This is due to the development of the pattern of gyrification within and around the calcarine fissure. All macroscopic features have reached the mean adult value by the end of the first postnatal year. With aging, the only features to undergo significant regression are the cortical surface estimate and the caudorostral length. The total number of neurons in area 17 shows great interindividual variability at all ages. No decrease in the postnatal period or in aging could be demonstrated.
Resumo:
La planification scanographique (3D) a démontré son utilité pour une reconstruction anatomique plus précise de la hanche (longueur du fémur, centre de rotation, offset, antéversion et rétroversion). Des études ont montré que lors de la planification 2D 50% seulement correspondaient à l'implant définitif du fémur alors que dans une autre étude ce taux s'élevait à 94% pour une planification 3D. Les erreurs étaient liées à l'agrandissement des radiographies. L'erreur sur la taille de la tige est liée à l'estimation inadéquate de la morphologie osseuse ainsi qu'à la densité osseuse. L'erreur de l'antéversion, augmentée par l'inclinaison du bassin, a pu être éliminée par la planification 3D et l'offset restauré dans 98%. Cette étude est basée sur une nouvelle technique de planification scanographique en trois dimensions pour une meilleure précision de la reconstruction de la hanche. Le but de cette étude est de comparer l'anatomie post-opératoire à celle préopératoire en comparant les tailles d'implant prévu lors de la planification 3D à celle réellement utilisée lors de l'opération afin de déterminer l'exactitude de la restauration anatomique avec étude des différents paramètres (centre de rotation, densité osseuse, L'offset fémoral, rotations des implants, longueur du membre) à l'aide du Logiciel HIP-PLAN (Symbios) avec évaluation de la reproductibilité de notre planification 3D dans une série prospective de 50 patients subissant une prothèse totale de hanche non cimentée primaire par voie antérieure. La planification pré-opératoire a été comparée à un CTscan postopératoire par fusion d'images. CONCLUSION ET PRESPECTIVE Les résultats obtenus sont les suivants : La taille de l'implant a été prédit correctement dans 100% des tiges, 94% des cupules et 88% des têtes (longueur). La différence entre le prévu et la longueur de la jambe postopératoire était de 0,3+2,3 mm. Les valeurs de décalage global, antéversion fémorale, inclinaison et antéversion de la cupule étaient 1,4 mm ± 3,1, 0,6 ± 3,3 0 -0,4 0 ± 5 et 6,9 ° ± 11,4, respectivement. Cette planification permet de prévoir la taille de l'implant précis. Position de la tige et de l'inclinaison de la cupule sont exactement reproductible. La planification scanographique préopératoire 3D permet une évaluation précise de l'anatomie individuelle des patients subissant une prothèse totale de hanche. La prédiction de la taille de l'implant est fiable et la précision du positionnement de la tige est excellente. Toutefois, aucun avantage n'est observée en termes d'orientation de la cupule par rapport aux études impliquant une planification 2D ou la navigation. De plus amples recherches comparant les différentes techniques de planification pré-opératoire à la navigation sont nécessaire.
Resumo:
Wave-activity conservation laws are key to understanding wave propagation in inhomogeneous environments. Their most general formulation follows from the Hamiltonian structure of geophysical fluid dynamics. For large-scale atmospheric dynamics, the Eliassen–Palm wave activity is a well-known example and is central to theoretical analysis. On the mesoscale, while such conservation laws have been worked out in two dimensions, their application to a horizontally homogeneous background flow in three dimensions fails because of a degeneracy created by the absence of a background potential vorticity gradient. Earlier three-dimensional results based on linear WKB theory considered only Doppler-shifted gravity waves, not waves in a stratified shear flow. Consideration of a background flow depending only on altitude is motivated by the parameterization of subgrid-scales in climate models where there is an imposed separation of horizontal length and time scales, but vertical coupling within each column. Here we show how this degeneracy can be overcome and wave-activity conservation laws derived for three-dimensional disturbances to a horizontally homogeneous background flow. Explicit expressions for pseudoenergy and pseudomomentum in the anelastic and Boussinesq models are derived, and it is shown how the previously derived relations for the two-dimensional problem can be treated as a limiting case of the three-dimensional problem. The results also generalize earlier three-dimensional results in that there is no slowly varying WKB-type requirement on the background flow, and the results are extendable to finite amplitude. The relationship A E =cA P between pseudoenergy A E and pseudomomentum A P, where c is the horizontal phase speed in the direction of symmetry associated with A P, has important applications to gravity-wave parameterization and provides a generalized statement of the first Eliassen–Palm theorem.
Resumo:
Inside the `cavernous sinus` or `parasellar region` the human internal carotid artery takes the shape of a siphon that is twisted and torqued in three dimensions and surrounded by a network of veins. The parasellar section of the internal carotid artery is of broad biological and medical interest, as its peculiar shape is associated with temperature regulation in the brain and correlated with the occurrence of vascular pathologies. The present study aims to provide anatomical descriptions and objective mathematical characterizations of the shape of the parasellar section of the internal carotid artery in human infants and its modifications during ontogeny. Three-dimensional (3D) computer models of the parasellar section of the internal carotid artery of infants were generated with a state-of-the-art 3D reconstruction method and analysed using both traditional morphometric methods and novel mathematical algorithms. We show that four constant, demarcated bends can be described along the infant parasellar section of the internal carotid artery, and we provide measurements of their angles. We further provide calculations of the curvature and torsion energy, and the total complexity of the 3D skeleton of the parasellar section of the internal carotid artery, and compare the complexity of this in infants and adults. Finally, we examine the relationship between shape parameters of the parasellar section of the internal carotid artery in infants, and the occurrence of intima cushions, and evaluate the reliability of subjective angle measurements for characterizing the complexity of the parasellar section of the internal carotid artery in infants. The results can serve as objective reference data for comparative studies and for medical imaging diagnostics. They also form the basis for a new hypothesis that explains the mechanisms responsible for the ontogenetic transformation in the shape of the parasellar section of the internal carotid artery.
Resumo:
This paper describes strategies and techniques to perform modeling and automatic mesh generation of the aorta artery and its tunics (adventitia, media and intima walls), using open source codes. The models were constructed in the Blender package and Python scripts were used to export the data necessary for the mesh generation in TetGen. The strategies proposed are able to provide meshes of complicated and irregular volumes, with a large number of mesh elements involved (12,000,000 tetrahedrons approximately). These meshes can be used to perform computational simulations by Finite Element Method (FEM). © Published under licence by IOP Publishing Ltd.
Resumo:
A complete laser cooling setup was built, with focus on threedimensional near-resonant optical lattices for cesium. These consist of regularly ordered micropotentials, created by the interference of four laser beams. One key feature of optical lattices is an inherent ”Sisyphus cooling” process. It efficiently extracts kinetic energy from the atoms, leading to equilibrium temperatures of a few µK. The corresponding kinetic energy is lower than the depth of the potential wells, so that atoms can be trapped. We performed detailed studies of the cooling processes in optical lattices by using the time-of-flight and absorption-imaging techniques. We investigated the dependence of the equilibrium temperature on the optical lattice parameters, such as detuning, optical potential and lattice geometry. The presence of neighbouring transitions in the cesium hyperfine level structure was used to break symmetries in order to identify, which role “red” and “blue” transitions play in the cooling. We also examined the limits for the cooling process in optical lattices, and the possible difference in steady-state velocity distributions for different directions. Moreover, in collaboration with ´Ecole Normale Sup´erieure in Paris, numerical simulations were performed in order to get more insight in the cooling dynamics of optical lattices. Optical lattices can keep atoms almost perfectly isolated from the environment and have therefore been suggested as a platform for a host of possible experiments aimed at coherent quantum manipulations, such as spin-squeezing and the implementation of quantum logic-gates. We developed a novel way to trap two different cesium ground states in two distinct, interpenetrating optical lattices, and to change the distance between sites of one lattice relative to sites of the other lattice. This is a first step towards the implementation of quantum simulation schemes in optical lattices.
Resumo:
The aim of this PhD thesis " Simulation Guided Navigation in cranio- maxillo- facial surgery : a new approach to Improve intraoperative three-dimensional accuracy and reproducibility during surgery ." was at the center of its attention the various applications of a method introduced by our School in 2010 and has as its theme the increase of interest of reproducibility of surgical programs through methods that in whole or in part are using intraoperative navigation. It was introduced in Orthognathic Surgery Validation a new method for the interventions carried out according to the method Simulation Guided Navigation in facial deformities ; was then analyzed the method of three-dimensional control of the osteotomies through the use of templates and cutting of plates using the method precontoured CAD -CAM and laser sintering . It was finally proceeded to introduce the method of piezonavigated surgery in the various branches of maxillofacial surgery . These studies have been subjected to validation processes and the results are presented .
Resumo:
Mineral dust shape and roughness are important for a multitude of processes; it is known for aspherical shape but the true measurements in three dimensions are rare. Atomic Force Microscope was used for determine both 3D shape and roughness for two dust which are commonly used in laboratory experiments – Arizona Test Dust (ATD) and Kaolinite. We determined both of them are rather flat and round; an oblate spheroid would be a good model. Loess Filter was used to smooth the particles' surface and correlation analysis was used to examine the surfaces' properties of the dust; we found no features under 100nm scales. Also, our particles' surface area result is very similar to BET surface area.
Resumo:
BACKGROUND AIMS The diverse phenotypic changes and clinical and economic disadvantages associated with the monolayer expansion of bone marrow-derived mesenchymal stromal cells (MSCs) have focused attention on the development of one-step intraoperative cells therapies and homing strategies. The mononuclear cell fraction of bone marrow, inclusive of discrete stem cell populations, is not well characterized, and we currently lack suitable cell culture systems in which to culture and investigate the behavior of these cells. METHODS Human bone marrow-derived mononuclear cells were cultured within fibrin for 2 weeks with or without fibroblast growth factor-2 supplementation. DNA content and cell viability of enzymatically retrieved cells were determined at days 7 and 14. Cell surface marker profiling and cell cycle analysis were performed by means of multi-color flow cytometry and a 5-ethynyl-2'-deoxyuridine incorporation assay, respectively. RESULTS Total mononuclear cell fractions, isolated from whole human bone marrow, was successfully cultured in fibrin gels for up to 14 days under static conditions. Discrete niche cell populations including MSCs, pericytes and hematopoietic stem cells were maintained in relative quiescence for 7 days in proportions similar to that in freshly isolated cells. Colony-forming unit efficiency of enzymatically retrieved MSCs was significantly higher at day 14 compared to day 0; and in accordance with previously published works, it was fibroblast growth factor-2-dependant. CONCLUSIONS Fibrin gels provide a simple, novel system in which to culture and study the complete fraction of bone marrow-derived mononuclear cells and may support the development of improved bone marrow cell-based therapies.