950 resultados para Text to speech
Resumo:
In this paper, a rule-based automatic syllabifier for Danish is described using the Maximal Onset Principle. Prior success rates of rule-based methods applied to Portuguese and Catalan syllabification modules were on the basis of this work. The system was implemented and tested using a very small set of rules. The results gave rise to 96.9% and 98.7% of word accuracy rate, contrary to our initial expectations, being Danish a language with a complex syllabic structure and thus difficult to be rule-driven. Comparison with data-driven syllabification system using artificial neural networks showed a higher accuracy rate of the former system.
Resumo:
This paper discusses the implementation details of a child friendly, good quality, English text-to-speech (TTS) system that is phoneme-based, concatenative, easy to set up and use with little memory. Direct waveform concatenation and linear prediction coding (LPC) are used. Most existing TTS systems are unit-selection based, which use standard speech databases available in neutral adult voices.Here reduced memory is achieved by the concatenation of phonemes and by replacing phonetic wave files with their LPC coefficients. Linguistic analysis was used to reduce the algorithmic complexity instead of signal processing techniques. Sufficient degree of customization and generalization catering to the needs of the child user had been included through the provision for vocabulary and voice selection to suit the requisites of the child. Prosody had also been incorporated. This inexpensive TTS systemwas implemented inMATLAB, with the synthesis presented by means of a graphical user interface (GUI), thus making it child friendly. This can be used not only as an interesting language learning aid for the normal child but it also serves as a speech aid to the vocally disabled child. The quality of the synthesized speech was evaluated using the mean opinion score (MOS).
Resumo:
This paper describes the text normalization module of a text to speech fully-trainable conversion system and its application to number transcription. The main target is to generate a language independent text normalization module, based on data instead of on expert rules. This paper proposes a general architecture based on statistical machine translation techniques. This proposal is composed of three main modules: a tokenizer for splitting the text input into a token graph, a phrase-based translation module for token translation, and a post-processing module for removing some tokens. This architecture has been evaluated for number transcription in several languages: English, Spanish and Romanian. Number transcription is an important aspect in the text normalization problem.
Resumo:
This work examines prosody modelling for the Standard Yorùbá (SY) language in the context of computer text-to-speech synthesis applications. The thesis of this research is that it is possible to develop a practical prosody model by using appropriate computational tools and techniques which combines acoustic data with an encoding of the phonological and phonetic knowledge provided by experts. Our prosody model is conceptualised around a modular holistic framework. The framework is implemented using the Relational Tree (R-Tree) techniques (Ehrich and Foith, 1976). R-Tree is a sophisticated data structure that provides a multi-dimensional description of a waveform. A Skeletal Tree (S-Tree) is first generated using algorithms based on the tone phonological rules of SY. Subsequent steps update the S-Tree by computing the numerical values of the prosody dimensions. To implement the intonation dimension, fuzzy control rules where developed based on data from native speakers of Yorùbá. The Classification And Regression Tree (CART) and the Fuzzy Decision Tree (FDT) techniques were tested in modelling the duration dimension. The FDT was selected based on its better performance. An important feature of our R-Tree framework is its flexibility in that it facilitates the independent implementation of the different dimensions of prosody, i.e. duration and intonation, using different techniques and their subsequent integration. Our approach provides us with a flexible and extendible model that can also be used to implement, study and explain the theory behind aspects of the phenomena observed in speech prosody.
Resumo:
In this paper, we present syllable-based duration modelling in the context of a prosody model for Standard Yorùbá (SY) text-to-speech (TTS) synthesis applications. Our prosody model is conceptualised around a modular holistic framework. This framework is implemented using the Relational Tree (R-Tree) techniques. An important feature of our R-Tree framework is its flexibility in that it facilitates the independent implementation of the different dimensions of prosody, i.e. duration, intonation, and intensity, using different techniques and their subsequent integration. We applied the Fuzzy Decision Tree (FDT) technique to model the duration dimension. In order to evaluate the effectiveness of FDT in duration modelling, we have also developed a Classification And Regression Tree (CART) based duration model using the same speech data. Each of these models was integrated into our R-Tree based prosody model. We performed both quantitative (i.e. Root Mean Square Error (RMSE) and Correlation (Corr)) and qualitative (i.e. intelligibility and naturalness) evaluations on the two duration models. The results show that CART models the training data more accurately than FDT. The FDT model, however, shows a better ability to extrapolate from the training data since it achieved a better accuracy for the test data set. Our qualitative evaluation results show that our FDT model produces synthesised speech that is perceived to be more natural than our CART model. In addition, we also observed that the expressiveness of FDT is much better than that of CART. That is because the representation in FDT is not restricted to a set of piece-wise or discrete constant approximation. We, therefore, conclude that the FDT approach is a practical approach for duration modelling in SY TTS applications. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a novel intonation modelling approach and demonstrates its applicability using the Standard Yorùbá language. Our approach is motivated by the theory that abstract and realised forms of intonation and other dimensions of prosody should be modelled within a modular and unified framework. In our model, this framework is implemented using the Relational Tree (R-Tree) technique. The R-Tree is a sophisticated data structure for representing a multi-dimensional waveform in the form of a tree. Our R-Tree for an utterance is generated in two steps. First, the abstract structure of the waveform, called the Skeletal Tree (S-Tree), is generated using tone phonological rules for the target language. Second, the numerical values of the perceptually significant peaks and valleys on the S-Tree are computed using a fuzzy logic based model. The resulting points are then joined by applying interpolation techniques. The actual intonation contour is synthesised by Pitch Synchronous Overlap Technique (PSOLA) using the Praat software. We performed both quantitative and qualitative evaluations of our model. The preliminary results suggest that, although the model does not predict the numerical speech data as accurately as contemporary data-driven approaches, it produces synthetic speech with comparable intelligibility and naturalness. Furthermore, our model is easy to implement, interpret and adapt to other tone languages.
Resumo:
In this paper we present the design and analysis of an intonation model for text-to-speech (TTS) synthesis applications using a combination of Relational Tree (RT) and Fuzzy Logic (FL) technologies. The model is demonstrated using the Standard Yorùbá (SY) language. In the proposed intonation model, phonological information extracted from text is converted into an RT. RT is a sophisticated data structure that represents the peaks and valleys as well as the spatial structure of a waveform symbolically in the form of trees. An initial approximation to the RT, called Skeletal Tree (ST), is first generated algorithmically. The exact numerical values of the peaks and valleys on the ST is then computed using FL. Quantitative analysis of the result gives RMSE of 0.56 and 0.71 for peak and valley respectively. Mean Opinion Scores (MOS) of 9.5 and 6.8, on a scale of 1 - -10, was obtained for intelligibility and naturalness respectively.
Resumo:
This study investigated the effects of word prediction and text-to-speech on the narrative composition writing skills of 6, fifth-grade Hispanic boys with specific learning disabilities (SLD). A multiple baseline design across subjects was used to explore the efficacy of word prediction and text-to-speech alone and in combination on four dependent variables: writing fluency (words per minute), syntax (T-units), spelling accuracy, and overall organization (holistic scoring rubric). Data were collected and analyzed during baseline, assistive technology interventions, and at 2-, 4-, and 6-week maintenance probes. ^ Participants were equally divided into Cohorts A and B, and two separate but related studies were conducted. Throughout all phases of the study, participants wrote narrative compositions for 15-minute sessions. During baseline, participants used word processing only. During the assistive technology intervention condition, Cohort A participants used word prediction followed by word prediction with text-to-speech. Concurrently, Cohort B participants used text-to-speech followed by text-to-speech with word prediction. ^ The results of this study indicate that word prediction alone or in combination with text-to-speech has a positive effect on the narrative writing compositions of students with SLD. Overall, participants in Cohorts A and B wrote more words, more T-units, and spelled more words correctly. A sign test indicated that these perceived effects were not likely due to chance. Additionally, the quality of writing improved as measured by holistic rubric scores. When participants in Cohort B used text-to-speech alone, with the exception of spelling accuracy, inconsequential results were observed on all dependent variables. ^ This study demonstrated that word prediction alone or in combination assists students with SLD to write longer, improved-quality, narrative compositions. These results suggest that word prediction or word prediction with text-to-speech be considered as a writing support to facilitate the production of a first draft of a narrative composition. However, caution should be given to the use of text-to-speech alone as its effectiveness has not been established. Recommendations for future research include investigating the use of these technologies in other phases of the writing process, with other student populations, and with other writing styles. Further, these technologies should be investigated while integrated into classroom composition instruction. ^
Resumo:
This paper reviews a study to determine if an auditory approach to speech correction can be of beneift to hearing impaired children who have become visually oriented.
Resumo:
This paper describes a module for the prediction of emotions in text chats in Spanish, oriented to its use in specific-domain text-to-speech systems. A general overview of the system is given, and the results of some evaluations carried out with two corpora of real chat messages are described. These results seem to indicate that this system offers a performance similar to other systems described in the literature, for a more complex task than other systems (identification of emotions and emotional intensity in the chat domain).
Resumo:
This paper presents a novel prosody model in the context of computer text-to-speech synthesis applications for tone languages. We have demonstrated its applicability using the Standard Yorùbá (SY) language. Our approach is motivated by the theory that abstract and realised forms of various prosody dimensions should be modelled within a modular and unified framework [Coleman, J.S., 1994. Polysyllabic words in the YorkTalk synthesis system. In: Keating, P.A. (Ed.), Phonological Structure and Forms: Papers in Laboratory Phonology III, Cambridge University Press, Cambridge, pp. 293–324]. We have implemented this framework using the Relational Tree (R-Tree) technique. R-Tree is a sophisticated data structure for representing a multi-dimensional waveform in the form of a tree. The underlying assumption of this research is that it is possible to develop a practical prosody model by using appropriate computational tools and techniques which combine acoustic data with an encoding of the phonological and phonetic knowledge provided by experts. To implement the intonation dimension, fuzzy logic based rules were developed using speech data from native speakers of Yorùbá. The Fuzzy Decision Tree (FDT) and the Classification and Regression Tree (CART) techniques were tested in modelling the duration dimension. For practical reasons, we have selected the FDT for implementing the duration dimension of our prosody model. To establish the effectiveness of our prosody model, we have also developed a Stem-ML prosody model for SY. We have performed both quantitative and qualitative evaluations on our implemented prosody models. The results suggest that, although the R-Tree model does not predict the numerical speech prosody data as accurately as the Stem-ML model, it produces synthetic speech prosody with better intelligibility and naturalness. The R-Tree model is particularly suitable for speech prosody modelling for languages with limited language resources and expertise, e.g. African languages. Furthermore, the R-Tree model is easy to implement, interpret and analyse.
Resumo:
In this paper, a linguistically rule-based grapheme-to-phone (G2P) transcription algorithm is described for European Portuguese. A complete set of phonological and phonetic transcription rules regarding the European Portuguese standard variety is presented. This algorithm was implemented and tested by using online newspaper articles. The obtained experimental results gave rise to 98.80% of accuracy rate. Future developments in order to increase this value are foreseen. Our purpose with this work is to develop a module/ tool that can improve synthetic speech naturalness in European Portuguese. Other applications of this system can be expected like language teaching/learning. These results, together with our perspectives of future improvements, have proved the dramatic importance of linguistic knowledge on the development of Text-to-Speech systems (TTS).
Resumo:
Subjects with autism often show language difficulties, but it is unclear how they relate to neurophysiological anomalies of cortical speech processing. We used combined EEG and fMRI in 13 subjects with autism and 13 control participants and show that in autism, gamma and theta cortical activity do not engage synergistically in response to speech. Theta activity in left auditory cortex fails to track speech modulations, and to down-regulate gamma oscillations in the group with autism. This deficit predicts the severity of both verbal impairment and autism symptoms in the affected sample. Finally, we found that oscillation-based connectivity between auditory and other language cortices is altered in autism. These results suggest that the verbal disorder in autism could be associated with an altered balance of slow and fast auditory oscillations, and that this anomaly could compromise the mapping between sensory input and higher-level cognitive representations.