996 resultados para Temporal sequences


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work discusses the determination of the breathing patterns in time sequence of images obtained from magnetic resonance (MR) and their use in the temporal registration of coronal and sagittal images. The registration is made without the use of any triggering information and any special gas to enhance the contrast. The temporal sequences of images are acquired in free breathing. The real movement of the lung has never been seen directly, as it is totally dependent on its surrounding muscles and collapses without them. The visualization of the lung in motion is an actual topic of research in medicine. The lung movement is not periodic and it is susceptible to variations in the degree of respiration. Compared to computerized tomography (CT), MR imaging involves longer acquisition times and it is preferable because it does not involve radiation. As coronal and sagittal sequences of images are orthogonal to each other, their intersection corresponds to a segment in the three-dimensional space. The registration is based on the analysis of this intersection segment. A time sequence of this intersection segment can be stacked, defining a two-dimension spatio-temporal (2DST) image. The algorithm proposed in this work can detect asynchronous movements of the internal lung structures and lung surrounding organs. It is assumed that the diaphragmatic movement is the principal movement and all the lung structures move almost synchronously. The synchronization is performed through a pattern named respiratory function. This pattern is obtained by processing a 2DST image. An interval Hough transform algorithm searches for synchronized movements with the respiratory function. A greedy active contour algorithm adjusts small discrepancies originated by asynchronous movements in the respiratory patterns. The output is a set of respiratory patterns. Finally, the composition of coronal and sagittal image pairs that are in the same breathing phase is realized by comparing of respiratory patterns originated from diaphragmatic and upper boundary surfaces. When available, the respiratory patterns associated to lung internal structures are also used. The results of the proposed method are compared with the pixel-by-pixel comparison method. The proposed method increases the number of registered pairs representing composed images and allows an easy check of the breathing phase. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forest fire sequences can be modelled as a stochastic point process where events are characterized by their spatial locations and occurrence in time. Cluster analysis permits the detection of the space/time pattern distribution of forest fires. These analyses are useful to assist fire-managers in identifying risk areas, implementing preventive measures and conducting strategies for an efficient distribution of the firefighting resources. This paper aims to identify hot spots in forest fire sequences by means of the space-time scan statistics permutation model (STSSP) and a geographical information system (GIS) for data and results visualization. The scan statistical methodology uses a scanning window, which moves across space and time, detecting local excesses of events in specific areas over a certain period of time. Finally, the statistical significance of each cluster is evaluated through Monte Carlo hypothesis testing. The case study is the forest fires registered by the Forest Service in Canton Ticino (Switzerland) from 1969 to 2008. This dataset consists of geo-referenced single events including the location of the ignition points and additional information. The data were aggregated into three sub-periods (considering important preventive legal dispositions) and two main ignition-causes (lightning and anthropogenic causes). Results revealed that forest fire events in Ticino are mainly clustered in the southern region where most of the population is settled. Our analysis uncovered local hot spots arising from extemporaneous arson activities. Results regarding the naturally-caused fires (lightning fires) disclosed two clusters detected in the northern mountainous area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pattern discovery in a long temporal event sequence is of great importance in many application domains. Most of the previous work focuses on identifying positive associations among time stamped event types. In this paper, we introduce the problem of defining and discovering negative associations that, as positive rules, may also serve as a source of knowledge discovery. In general, an event-oriented pattern is a pattern that associates with a selected type of event, called a target event. As a counter-part of previous research, we identify patterns that have a negative relationship with the target events. A set of criteria is defined to evaluate the interestingness of patterns associated with such negative relationships. In the process of counting the frequency of a pattern, we propose a new approach, called unique minimal occurrence, which guarantees that the Apriori property holds for all patterns in a long sequence. Based on the interestingness measures, algorithms are proposed to discover potentially interesting patterns for this negative rule problem. Finally, the experiment is made for a real application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major task of traditional temporal event sequence mining is to find all frequent event patterns from a long temporal sequence. In many real applications, however, events are often grouped into different types, and not all types are of equal importance. In this paper, we consider the problem of efficient mining of temporal event sequences which lead to an instance of a specific type of event. Temporal constraints are used to ensure sensibility of the mining results. We will first generalise and formalise the problem of event-oriented temporal sequence data mining. After discussing some unique issues in this new problem, we give a set of criteria, which are adapted from traditional data mining techniques, to measure the quality of patterns to be discovered. Finally we present an algorithm to discover potentially interesting patterns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Time Frames brings together a group of cultural historians studying several different periods and locations in the history of Western culture, to discuss the temporal structures which historical studies live by. How do we construct chronologies and temporal sequences? How should we approach the discontinuity and particularity of the past, and its periodization? Deploying ideas and frames from three contemporary conceptual debates - spatial organisation, constructions of experience, and the cultural embeddedness of individual agency - the writers of this book propose methods of historicizing and explore what cultural history is about today.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some fundamental biological processes such as embryonic development have been preserved during evolution and are common to species belonging to different phylogenetic positions, but are nowadays largely unknown. The understanding of cell morphodynamics leading to the formation of organized spatial distribution of cells such as tissues and organs can be achieved through the reconstruction of cells shape and position during the development of a live animal embryo. We design in this work a chain of image processing methods to automatically segment and track cells nuclei and membranes during the development of a zebrafish embryo, which has been largely validates as model organism to understand vertebrate development, gene function and healingrepair mechanisms in vertebrates. The embryo is previously labeled through the ubiquitous expression of fluorescent proteins addressed to cells nuclei and membranes, and temporal sequences of volumetric images are acquired with laser scanning microscopy. Cells position is detected by processing nuclei images either through the generalized form of the Hough transform or identifying nuclei position with local maxima after a smoothing preprocessing step. Membranes and nuclei shapes are reconstructed by using PDEs based variational techniques such as the Subjective Surfaces and the Chan Vese method. Cells tracking is performed by combining informations previously detected on cells shape and position with biological regularization constraints. Our results are manually validated and reconstruct the formation of zebrafish brain at 7-8 somite stage with all the cells tracked starting from late sphere stage with less than 2% error for at least 6 hours. Our reconstruction opens the way to a systematic investigation of cellular behaviors, of clonal origin and clonal complexity of brain organs, as well as the contribution of cell proliferation modes and cell movements to the formation of local patterns and morphogenetic fields.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background This study addressed the temporal properties of personality disorders and their treatment by schema-centered group psychotherapy. It investigated the change mechanisms of psychotherapy using a novel method by which psychotherapy can be modeled explicitly in the temporal domain. Methodology and Findings 69 patients were assigned to a specific schema-centered behavioral group psychotherapy, 26 to social skills training as a control condition. The largest diagnostic subgroups were narcissistic and borderline personality disorder. Both treatments offered 30 group sessions of 100 min duration each, at a frequency of two sessions per week. Therapy process was described by components resulting from principal component analysis of patients' session-reports that were obtained after each session. These patient-assessed components were Clarification, Bond, Rejection, and Emotional Activation. The statistical approach focused on time-lagged associations of components using time-series panel analysis. This method provided a detailed quantitative representation of therapy process. It was found that Clarification played a core role in schema-centered psychotherapy, reducing rejection and regulating the emotion of patients. This was also a change mechanism linked to therapy outcome. Conclusions/Significance The introduced process-oriented methodology allowed to highlight the mechanisms by which psychotherapeutic treatment became effective. Additionally, process models depicted the actual patterns that differentiated specific diagnostic subgroups. Time-series analysis explores Granger causality, a non-experimental approximation of causality based on temporal sequences. This methodology, resting upon naturalistic data, can explicate mechanisms of action in psychotherapy research and illustrate the temporal patterns underlying personality disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho apresenta um sistema neural modular, que processa separadamente informações de contexto espacial e temporal, para a tarefa de reprodução de sequências temporais. Para o desenvolvimento do sistema neural foram considerados redes neurais recorrentes, modelos estocásticos, sistemas neurais modulares e processamento de informações de contexto. Em seguida, foram estudados três modelos com abordagens distintas para aprendizagem de seqüências temporais: uma rede neural parcialmente recorrente, um exemplo de sistema neural modular e um modelo estocástico utilizando a teoria de modelos markovianos escondidos. Com base nos estudos e modelos apresentados, esta pesquisa propõe um sistema formado por dois módulos sucessivos distintos. Uma rede de propagação direta (módulo estimador de contexto espacial) realiza o processamento de contexto espacial identificando a seqüência a ser reproduzida e fornecendo um protótipo do contexto para o segundo módulo. Este é formado por uma rede parcialmente recorrente (módulo de reprodução de sequências temporais) para aprender as informações de contexto temporal e reproduzir em suas saídas a seqüência identificada pelo módulo anterior. Para a finalidade mencionada, este mestrado utiliza a distribuição de Gibbs na saída do módulo para contexto espacial de forma que este forneça probabilidades de contexto espacial, indicando o grau de certeza do módulo e possibilitando a utilização de procedimentos especiais para os casos de dúvida. O sistema neural foi testado em conjuntos contendo trajetórias abertas, fechadas, e com diferentes situações de ambigüidade e complexidade. Duas situações distintas foram avaliadas: (a) capacidade do sistema em reproduzir trajetórias a partir de pontos iniciais treinados; e (b) capacidade de generalização do sistema reproduzindo trajetórias considerando pontos iniciais ou finais em situações não treinadas. A situação (b) é um problema de difícil ) solução em redes neurais devido à falta de contexto temporal, essencial na reprodução de seqüências. Foram realizados experimentos comparando o desempenho do sistema modular proposto com o de uma rede parcialmente recorrente operando sozinha e um sistema modular neural (TOTEM). Os resultados sugerem que o sistema proposto apresentou uma capacidade de generalização significamente melhor, sem que houvesse uma deterioração na capacidade de reproduzir seqüências treinadas. Esses resultados foram obtidos em sistema mais simples que o TOTEM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Organismal development, homeostasis, and pathology are rooted in inherently probabilistic events. From gene expression to cellular differentiation, rates and likelihoods shape the form and function of biology. Processes ranging from growth to cancer homeostasis to reprogramming of stem cells all require transitions between distinct phenotypic states, and these occur at defined rates. Therefore, measuring the fidelity and dynamics with which such transitions occur is central to understanding natural biological phenomena and is critical for therapeutic interventions.

While these processes may produce robust population-level behaviors, decisions are made by individual cells. In certain circumstances, these minuscule computing units effectively roll dice to determine their fate. And while the 'omics' era has provided vast amounts of data on what these populations are doing en masse, the behaviors of the underlying units of these processes get washed out in averages.

Therefore, in order to understand the behavior of a sample of cells, it is critical to reveal how its underlying components, or mixture of cells in distinct states, each contribute to the overall phenotype. As such, we must first define what states exist in the population, determine what controls the stability of these states, and measure in high dimensionality the dynamics with which these cells transition between states.

To address a specific example of this general problem, we investigate the heterogeneity and dynamics of mouse embryonic stem cells (mESCs). While a number of reports have identified particular genes in ES cells that switch between 'high' and 'low' metastable expression states in culture, it remains unclear how levels of many of these regulators combine to form states in transcriptional space. Using a method called single molecule mRNA fluorescent in situ hybridization (smFISH), we quantitatively measure and fit distributions of core pluripotency regulators in single cells, identifying a wide range of variabilities between genes, but each explained by a simple model of bursty transcription. From this data, we also observed that strongly bimodal genes appear to be co-expressed, effectively limiting the occupancy of transcriptional space to two primary states across genes studied here. However, these states also appear punctuated by the conditional expression of the most highly variable genes, potentially defining smaller substates of pluripotency.

Having defined the transcriptional states, we next asked what might control their stability or persistence. Surprisingly, we found that DNA methylation, a mark normally associated with irreversible developmental progression, was itself differentially regulated between these two primary states. Furthermore, both acute or chronic inhibition of DNA methyltransferase activity led to reduced heterogeneity among the population, suggesting that metastability can be modulated by this strong epigenetic mark.

Finally, because understanding the dynamics of state transitions is fundamental to a variety of biological problems, we sought to develop a high-throughput method for the identification of cellular trajectories without the need for cell-line engineering. We achieved this by combining cell-lineage information gathered from time-lapse microscopy with endpoint smFISH for measurements of final expression states. Applying a simple mathematical framework to these lineage-tree associated expression states enables the inference of dynamic transitions. We apply our novel approach in order to infer temporal sequences of events, quantitative switching rates, and network topology among a set of ESC states.

Taken together, we identify distinct expression states in ES cells, gain fundamental insight into how a strong epigenetic modifier enforces the stability of these states, and develop and apply a new method for the identification of cellular trajectories using scalable in situ readouts of cellular state.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Given the dynamic nature of cardiac function, correct temporal alignment of pre-operative models and intraoperative images is crucial for augmented reality in cardiac image-guided interventions. As such, the current study focuses on the development of an image-based strategy for temporal alignment of multimodal cardiac imaging sequences, such as cine Magnetic Resonance Imaging (MRI) or 3D Ultrasound (US). First, we derive a robust, modality-independent signal from the image sequences, estimated by computing the normalized crosscorrelation between each frame in the temporal sequence and the end-diastolic frame. This signal is a resembler for the left-ventricle (LV) volume curve over time, whose variation indicates di erent temporal landmarks of the cardiac cycle. We then perform the temporal alignment of these surrogate signals derived from MRI and US sequences of the same patient through Dynamic Time Warping (DTW), allowing to synchronize both sequences. The proposed framework was evaluated in 98 patients, which have undergone both 3D+t MRI and US scans. The end-systolic frame could be accurately estimated as the minimum of the image-derived surrogate signal, presenting a relative error of 1:6 1:9% and 4:0 4:2% for the MRI and US sequences, respectively, thus supporting its association with key temporal instants of the cardiac cycle. The use of DTW reduces the desynchronization of the cardiac events in MRI and US sequences, allowing to temporally align multimodal cardiac imaging sequences. Overall, a generic, fast and accurate method for temporal synchronization of MRI and US sequences of the same patient was introduced. This approach could be straightforwardly used for the correct temporal alignment of pre-operative MRI information and intra-operative US images.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

O documento em anexo encontra-se na versão post-print (versão corrigida pelo editor).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Temporal dynamical analysis in fire sequences recorded from 1969 to 2008 in Canton Ticino (Switzerland) was carried out by using the Allan Factor statistics. The obtained results show the presence of daily periodicities, superimposed to two time-scaling regimes. The daily cycle vanishes for sequences of higher altitude fires, for which a single scaling behaviour is observed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gesneriaceae are represented in the New World (NW) by a major clade (c. 1000 species) currently recognized as subfamily Gesnerioideae. Radiation of this group occurred in all biomes of tropical America and was accompanied by extensive phenotypic and ecological diversification. Here we performed phylogenetic analyses using DNA sequences from three plastid loci to reconstruct the evolutionary history of Gesnerioideae and to investigate its relationship with other lineages of Gesneriaceae and Lamiales. Our molecular data confirm the inclusion of the South Pacific Coronanthereae and the Old World (OW) monotypic genus Titanotrichum in Gesnerioideae and the sister-group relationship of this subfamily to the rest of the OW Gesneriaceae. Calceolariaceae and the NW genera Peltanthera and Sanango appeared successively sister to Gesneriaceae, whereas Cubitanthus, which has been previously assigned to Gesneriaceae, is shown to be related to Linderniaceae. Based on molecular dating and biogeographical reconstruction analyses, we suggest that ancestors of Gesneriaceae originated in South America during the Late Cretaceous. Distribution of Gesneriaceae in the Palaeotropics and Australasia was inferred as resulting from two independent long-distance dispersals during the Eocene and Oligocene, respectively. In a short time span starting at 34 Mya, ancestors of Gesnerioideae colonized several Neotropical regions including the tropical Andes, Brazilian Atlantic forest, cerrado, Central America and the West Indies. Subsequent diversification within these areas occurred largely in situ and was particularly extensive in the mountainous systems of the Andes, Central America and the Brazilian Atlantic forest. Only two radiations account for 90% of the diversity of Gesneriaceae in the Brazilian Atlantic forest, whereas half of the species richness in the northern Andes and Central America originated during the last 10 Myr from a single radiation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several approaches have been developed to estimate both the relative and absolute rates of speciation and extinction within clades based on molecular phylogenetic reconstructions of evolutionary relationships, according to an underlying model of diversification. However, the macroevolutionary models established for eukaryotes have scarcely been used with prokaryotes. We have investigated the rate and pattern of cladogenesis in the genus Aeromonas (γ-Proteobacteria, Proteobacteria, Bacteria) using the sequences of five housekeeping genes and an uncorrelated relaxed-clock approach. To our knowledge, until now this analysis has never been applied to all the species described in a bacterial genus and thus opens up the possibility of establishing models of speciation from sequence data commonly used in phylogenetic studies of prokaryotes. Our results suggest that the genus Aeromonas began to diverge between 248 and 266 million years ago, exhibiting a constant divergence rate through the Phanerozoic, which could be described as a pure birth process.