958 resultados para Tectono-stratigraphy
Resumo:
A complex depositional history, related to Atlantic rifting, demonstrates the geological evolution during the late Jurassic and early Neocomian periods in the Araripe Basin NE Brazil. Based on outcrop, seismic and remote sensing data, a new model of the tectono-stratigraphic evolution of the section that covers the stages Dom João, Rio da Serra and Aratu (Brejo Santo, Missão Velha and Abaiara formations) is presented in this paper. In the stratigraphic section studied, ten sedimentary facies genetically linked to nine architectural elements were described, representing depositional systems associated with fluvial, aeolian and deltaic environments. Based on the relationship between the rates of creation of accommodation space and sediment influx (A / S) it was possible to associate these depositional systems with High and Low accommodation system tracks. These system tracks represent two tectono-sequences, separated by regional unconformities. The Tectono-sequence I, which includes lithotypes from the Brejo Santo Formation and is related to the pre-rift stage, is bounded at the base by the Paleozoic unconformity. This unit represents only a High Accommodation System Track, composed by a succession of pelitic levels interbedded with sandstones and limestones, from a large fluvial floodplain origin, developed under arid climatic conditions. The Tectono-sequence II, separated from the underlying unit by an erosional unconformity, is related to the rift stage, and is composed by the Missão Velha and Abaiara Formation lithotypes. Changes in depositional style that reflect variations in the A / S ratio, and the presence of hydroplastic deformation bands, make it possible to divide this tectonosequence into two internal sequences. Sequence IIA, which includes the lower portion of the Missão Velha Formation and sequence IIB, is composed by the upper section of the Missão Velha and Abaiara Formations The Sequence IIA below, composed only by the Low Accommodation System Track, includes crossbedding sandstones interbedded with massive mudstones, which are interpreted as deposits of sandy gravel beds wandering rivers. Sequence IIB, above, is more complex, showing a basal Low Accommodation System Track and a High Accommodation System Track at the top, separated by an expansion surface. The lower System Track, related to the upper portion of the Missão Velha Formation, is composed by a series of amalgamated channels, separated by erosion surfaces, interpreted as deposits of a belt of braided channels. The High Accommodation System Track, correlated with the Abaiara Unit, is marked by a significant increase in the A / S, resulting in the progradation of a system of braided river deltas with aeolic influence. Regarding tectonic evolution, the stratigraphic study indicates that the Tectonosequence Rift in the Araripe basin was developed in two phases: first characterized by a beginning of rifting, related to Sequence IIA, followed by a phase of syndepositional deformation, represented by sequence IIB. The first phase was not influenced by the development of large faults, but was influenced by a sharp and continuous decrease of accommodation space that permitted a change in depositional patterns, establishing a new depositional architecture. In turn, the stage of syndepositional deformation allowed for the generation of enough accommodation space for the preservation of fluvial-lacustrine deposits and conditioned the progradation of a braided river-dominated delta system.
Resumo:
Through the detailed analyses of Mesozoic tectono-stratigraphy and basin formation dynamic mechanism and the styles of different units in the western margin of Ordos Basin(Abbreviated to "the western margin"), while some issues of the pre-Mesozoic in the western margin and central part of Ordos Basin also be discussed, the main views and conclusion as follows: 1. There are three types of depositional systems which are related with syndepositional tectonic actions and different tectonic prototype basins, including: alluvial fan systems, river system (braided river system and sinuosity river system), lacustrine-river delta system and fan delta system. They have complex constitutions of genetic facies. For the tectonic sequence VI, the fan sediments finning upper in the north-western margin and coarse upper in the south-western margin respectively. 2. In order to light the relationship between basin basement subsidence rate and sediment supply and the superposed styles, five categories of depositional systems tracts in different prototype basins were defined: aggrading and transgressive systems tracts during early subsidence stage, regressive and aggrading systems tracts during rapid subsidence, upper transgessive systems tracts during later subsidence stage. Different filling characteristics and related tectonic actions in different stages in Mesozoic period were discussed. 3. In order to determined the tectonic events of the provenance zones and provenance strata corresponding to basins sediments, according the clastics dispersal style and chemical analyses results of sediments in different areas, the provenance characteristics have been described. The collision stage between the "Mongolia block" and the north-China block may be the late permian; The sediments of Mesozoic strata in the north-western margin is mainly from the Alex blocks and north-Qilian Paleozoic orogeny, while the south-western margin from Qinling orogeny. The volcanic debris in the Yan'an Formation may be from the arc of the north margin of north-China block, although more study needed for the origin of the debris. The provenance of the Cretaceous may be from the early orogeny and the metamorphic basement of Longshan group. 4. The subsidence curve and subsidence rate and sedimentary rate in different units have been analyzed. For different prototype basin, the form of the subsidence curves are different. The subsidence of the basins are related with the orogeny of the basins.The beginning age of the foreland basin may be the middle Triassic. The change of basement subsidence show the migration of the foredeep and forebulge into the basin. The present appearance of the Ordos basin may be formed at the late stage of Cretaceous, not formed at the late Jurassic. 5. The structure mode of the west margin is very complex. Structure transfer in different fold-thrust units has been divided into three types: transfer faults, transition structures and intersected form. The theoretic explanations also have been given for the origin and the forming mechanism. The unique structure form of Hengshanpu is vergent west different from the east vergence of most thrust faults, the mechanism of which has been explained. 6. In Triassic period, the He1anshan basin is extensional basin while the Hengshanbu is "forland", and the possible mechanism of the seemingly incompatible structures has been explained. First time, the thesis integrate the Jurassic—early Cretaceous basins of west margin with the Hexi corridor basins and explain the unitive forming mechanism. The model thinks the lateral extrusion is the main mechanism of the Hexi corridor and west margin basins, meanwhile, the deep elements and basement characters of the basins. Also, for the first time, we determine the age of the basalt in Helanshan area as the Cretaceous period, the age matching with the forming of the Cretaceous basins and as the main factor of the coal metamorphism in the Helanshan area. 7. The Neoprotterozoic aulacogen is not the continuation of the Mesozoic aulacogen, while it is another new rift stage. In the Paleozoic, the Liupanshan—southern Helanshan area is part of the back-arc basins of north Qilian ocean. 8. The Helanshan "alacogen" is connected with the north margin of north China block, not end at the north of Zhouzishan area like "appendices". Also, I think the upper Devonian basin as the beginning stage of the extensional early Carboniferous basins, not as a part of the foreland basins of Silurian period, not the collision rift. 9. The controlling factor of the difference of the deformation styles of the north-west margin and the south-west margin is the difference of the basements and adjacent tectonic units of the two parts.
Resumo:
The Dongying depression, located in the northern part of the jiyang Sag in the Buohaiwan Basin, comprises one of the major oil-producing bases of the Shengli oil-field. The prediction and exploration of subtle or litho1ogical oil traps in the oil-field has become the major confronted target. This is also one of the frontier study areas in the highly-explored oil-bearing basins in East China and abroad. Based on the integrated analysis of the geological, seismic and logging data and the theories of sequence stratigraphy, tectono-stratigraphy and petroleum system, the paper has attempted to document the characteristics of the sequence stratigraphic and structural frameworks of the low Tertiary, the syndepositional faults and their control on deposition, and then to investigate the forming conditions and distribution of the tithological oil traps in the depression. The study has set up a set of analysis methods, which can be used to effectively analysis the sequence stratigraphy of inland basins and predict the distribution of sandstone reservoirs in the basins. The major achievements of the study are as follows: 1. The low Tertiary can be divided into 4 second-order sequences and 13 third-order sequences, and the systems tracts in the third-order sequences have been also identified based on the examination and correction of well logging data and seismic profiles. At the same time, the parasequences and their stacking pattern in the deltaic systems of the third member of the Shahejie Formation have been recognized in the key study area. It has been documented that the genetic relation of different order sequences to tectonic, climatic and sediment supply changes. The study suggested that the formation of the second-order sequences was related to multiple rifting, while the activity of the syndepositional faults controlled the stacking pattern of parasequences of the axial deltaic system in the depression. 2. A number of depositional facies have been recognized in the low Tertiary on the basis of seismic facies and well logging analysis. They include alluvial fan, fan delta or braided delta, axial delta, lowstand fan, lacustrine and gravity flow deposits. The lacustrine lowstand fan deposits are firstly recognized in the depression, and their facies architecture and distribution have been investigated. The study has shown that the lowstand fan deposits are the important sandstone reservoirs as lithological oil traps in the depression. 3. The mapping of depositional systems within sequences has revealed the time and special distrbution of depositional systems developed in the basin. It is pointed out that major elastic systems comprise the northern marginal depositional systems consisting of alluvial fan, fan delta and offshore lowstand fan deposits, the southern gentle slope elastic deposits composed of shallow lacustrine, braided delta and lowstand fan deposits and the axial deltaic systems including those from eastern and western ends of the depression. 4. The genetic relationship between the syndepositional faults and the distribution of sandstones has been studied in the paper, upper on the analysis of structural framework and syndepositional fault systems in the depression. The concept of structural slope-break has been firstly introduced into the study and the role of syndepositional faults controlling the development of sequence architecture and distribution of sandstones along the hinged and faulted margins have been widely investigated. It is suggested that structural styles of the structural slope-break controlled the distribution of lowstand fan deposits and formed a favorable zone for the formation of lithological or structure-lithological oil traps in the basin. 5. The paper has made a deep investigation into the forming condition and processes of the lithological traps in the depression, based the analysis of composition of reservoir, seal and resource rocks. It is pointed out that there were two major oil pool-forming periods, namely the end of the Dongying and Guangtao periods, and the later one is the most important. 6. The study has finally predicted a number of favorable targets for exploration of lithologieal traps in the depression. Most of them have been drilled and made great succeed with new discovered thousands tons of raw oil reserves.
Resumo:
The foreland basin on the northern margin of the lower reach of the Yangtze river (the lower Yangtze foreland basin) is tectonically situated in the basin-mountain transitional area along the southeastern flank of the Dabie mountains. The early formation and development of the basin is closely related to the open-up of the Mian-Lue paleo-oceanic basin on the southern margin of the Central Orogenic System represented by Qinling-Dabei orogenic belt, while the tectonic evolution of the middle-late stage of the basin is mainly related to development of the Mian-Lue tectonic zone that occurred on the basis of the previous Mian-Lue paleo-suture. The foreland basin of the northern rim of the lower reach of the Yangtze river was formed during the middle-Triassic collision between the Yangtze and North China plates and experienced an evolution of occuirence-development-extinction characterized by marine facies to continental facies and continental margin to intracontinent in terms of tectonic setting.The foreland basin (T2-J2) was developed on the basis of the passive continental marginal basin on the south side of the Mian-Lue paleo-ocean and superimposed by late Jurassic-Tertiary fault basin. The tectonic setting underwent a multiple transformation of rifting-collisional clososing-tensional faulting and depression, which resulted in changes of the property for the basin and the final formation of the superposed compose basin in a fashion of 3-story-building. According to the tectonic position and evolution stages of plate collision happening on the southeastern margin of the Dabie mountains, and tectono-tratigraphic features shown by the foreland basin in its main formational period, the evolution of the foreland basin can be divided into four stages: 1) pre-orogenic passive margin (P2-Ti). As the Mian-Lue ocean commenced subduction in the late-Permian, the approaching of the Yangtze and North China plates to each other led to long-periodical and large-scale marine regression in early Triassic which was 22 Ma earlier than the global one and generated I-type mixed strata of the clastic rocks and carbonate, and I-type carbonate platform. These represent the passive stratigraphy formed before formation of the foreland basin. 2) Foreland basin on continental margin during main orogenic episode (T2.3). The stage includes the sub-stage of marine foreland basin (T2X remain basin), which formed I-type stratigrphy of carbonate tidal flat-lagoon, the sub-stage of marine-continental transition-molasse showing II-type stratigraphy of marine-continental facies lake - continental facies lake. 3) Intracontinental foreland basin during intracontinental orogeny (Ji-2)- It is characterized by continental facies coal-bearing molasses. 4) Tensional fault and depression during post-orogeny (J3-E). It formed tectono-stratigraphy post formation of the foreland basin, marking the end of the foreland evolution. Fold-thrust deformation of the lower Yangtze foreland basin mainly happened in late middle-Jurassic, forming ramp structures along the Yangtze river that display thrusting, with deformation strength weakening toward the river from both the Dabie mountains and the Jiangnan rise. This exhibits as three zones in a pattern of thick-skinned structure involved the basement of the orogenic belt to decollement thin-skinned structure of fold-thrust from north to south: thrust zone of foreland basin on northern rim of the lower reach of the Yangtze river, foreland basin zone and Jiannan compose uplift zone. Due to the superposed tensional deformation on the earlier compressional deformation, the structural geometric stratification has occurred vertically: the upper part exhibits late tensional deformation, the middle portion is characterized by ramp fault -fold deformation on the base of the Silurian decollement and weak deformation in the lower portion consisting of Silurian and Neo-Proterozoic separated by the two decollements. These portions constitutes a three-layered structural assemblage in a 3-D geometric model.From the succession of the lower reach of the Yangtze river and combined with characteristics of hydrocarbon-bearing rocks and oil-gas system, it can be seen that the succession of the continental facies foreland basin overlies the marine facies stratigraphy on the passive continental margin, which formed upper continental facies and lower marine facies hydrocarbon-bearing rock system and oil-gas forming system possessing the basic conditions for oil-gas occurrence. Among the conditions, the key for oil-gas accumulation is development and preservation of the marine hydrocarbon-bearing rocks underlying the foreland basin. The synthetic study that in the lower Yangtze foreland basin (including the Wangjiang-Qianshan basin), the generation-reservoir-cover association with the Permian marine facies hydrocarbon-bearing rocks as the critical portion can be a prospective oil-gas accumulation.Therefore, it should aim at the upper Paleozoic marine hydrocarbon-bearing rock system and oil-gas forming system in oil-gas evaluation and exploration. Also, fining excellent reservoir phase and well-preserved oil-gas accumulation units is extremely important for a breakthrough in oil-gas exploration.
Resumo:
Peer reviewed
Resumo:
330 km 2 of the easter-n part of the Archean Manitou Lakes - Stormy Lake metavolcanic - metasedimentary belt have been mapped and sampled. A large number of rocks ~.vere analyzed for the major and trace constituents including the rare-earth elements (REE). The Stormy Lake - Kawashegamuk Lake area may be subdivided into four major lithological groups of supracrustal rocks 1) A north-facing mafic assemblage, consisting of pillowed tholeiitic basalts and gabbro sills characterized by flat REE profiles, is exposed in the south part of the map area and belongs to a 8000 m thick homoclinal assemblage outside the map area. Felsic pyroclastic rocks believed to have been issued from a large central vent conformably overlie the tholeiites. 2) A dominantly epiclastic group facing to the north consists of terrestrial deposits interpreted to be an alluvial fan deposit ; a submarine facies is represented by turbiditic sediments. 3) The northeastern part of the study area consists of volcanic rocks belonging to two mafic - felsic cycles facing to the southuest ; andesitic flows with fractionated REE patterns make up a large part of the upper cycle, whereas the lower cycle has a stronger chemical polarity being represented by tholeiitic flows, with flat REE, which a r e succeeded by dacitic and rhyolitic pyroclasti cs. iii 4) A thick monotonous succession of tholeiitic pillmled basalt f lows and gabbro sills with flat REE represent the youngest supracrustal rocks. TIle entire belt underwent folding, faulting and granitic plutonism during a tectono-thermal event around 2700 Ma ago. Rocks exposed in the map area were subjected to regional greenschist facies metamorphism, but higher metamorphic grades are present near late granitic intrusions. Geochemical studies have been useful in 1) distinguishing the various rock units ; 2) relating volcanic and intrusive rocks 3) studying the significance of chemical changes due to post magmatic processes 4) determining the petrogenesis of the major volcanic rock types. In doing so, two major volcanic suites have been recognized : a) a tholeiitic suite, mostly represented by mafic rocks, was derived from partial melting of upper mantle material depleted in Ti, K and the light REE ; b) a calc-alkalic suite which evolved from partial melting of amphibolite in the lower crust. The more differentiated magma types have been produced by a multistage process involving partial melting and fractional crystallization to yield a continuum of compos i t i ons ranging from basaltic andesite to rhyolite. A model for the development of the eastern part of the Manitou Lakes - Stormy Lake belt has been proposed.
Resumo:
Several publications have contributed to improve the stratigraphy of the Paraíba Basin in northeastern Brazil. However, the characterization and distribution of sedimentary units in onshore areas of this basin are still incomplete, despite their significance for reconstructing the tectono-sedimentary evolution of the South American passive margin. This work provides new information to differentiate among lithologically similar strata, otherwise entirely unrelated in time. This approach included morphological, sedimentological and stratigraphic descriptions based on surface and sub-surface data integrated with remote sensing, optically stimulated luminescence dating, U+Th/He dating of weathered goethite, and heavy mineral analysis. Based on this study, it was possible to show that Cretaceous units are constrained to the eastern part of the onshore Paraíba Basin. Except for a few outcrops of carbonatic rocks nearby the modern coastline, deposits of this age are not exposed to the surface in the study area. Instead, the sedimentary cover throughout the basin is constituted by mineralogically and chronologically distinctive deposits, inserted in the Barreiras Formation and mostly in the Post-Barreiras Sediments, of early/middle Miocene and Late Pleistocene-Holocene ages, respectively. The data presented in this work support tectonic deformation as a factor of great relevance to the distribution of the sedimentary units of the Paraíba Basin.
Resumo:
The Sascha-Pelligrini low-sulphidation epithermal system is located on the western edge of the Deseado Massif, Santa Cruz Province, Argentina. Outcrop sampling has returned values of up to 160g/t gold and 796g/t silver, with Mirasol Resources and Coeur D.Alene Mines currently exploring the property. Detailed mapping of the volcanic stratigraphy has defined three units that comprise the middle Jurassic Chon Aike Formation and two units that comprise the upper Jurassic La Matilde Formation. The Chon Aike Formation consists of rhyodacite ignimbrites and tuffs, with the La Matilde Formation including rhyolite ash and lithic tuffs. The volcanic sequence is intruded by a large flow-banded rhyolite dome, with small, spatially restricted granodiorite dykes and sills cropping out across the study area. ASTER multispectral mineral mapping, combined with PIMA (Portable Infrared Mineral Analyser) and XRD (X-ray diffraction) analysis defines an alteration pattern that zones from laumontite-montmorillonite, to illite-pyritechlorite, followed by a quartz-illite-smectite-pyrite-adularia vein selvage. Supergene kaolinite and steam-heated acid-sulphate kaolinite-alunite-opal alteration horizons crop out along the Sascha Vein trend and Pelligrini respectively. Paragenetically, epithermal veining varies from chalcedonic to saccharoidal with minor bladed textures, colloform/crustiform-banded with visible electrum and acanthite, crustiform-banded grey chalcedonic to jasperoidal with fine pyrite, and crystalline comb quartz. Geothermometry of mineralised veins constrains formation temperatures from 174.8 to 205.1¡ÆC and correlates with the stability field for the interstratified illite-smectite vein selvage. Vein morphology, mineralogy and associated alteration are controlled by host rock rheology, permeability, and depth of the palaeo-water table. Mineralisation within ginguro banded veins resulted from fluctuating fluid pH associated with selenide-rich magmatic pulses, pressure release boiling and wall-rock silicate buffering. The study of the Sascha-Pelligrini epithermal system will form the basis for a deposit-specific model helping to clarify the current understanding of epithermal deposits, and may serve as a template for exploration of similar epithermal deposits throughout Santa Cruz.
Resumo:
Two main deformational phases are recognised in the Archaean Boorara Domain of the Kalgoorlie Terrane, Eastern Goldfields Superterrane, Yilgarn Craton, Western Australia, primarily involving southover- north thrust faulting that repeated and thickened the stratigraphy, followed by east northeast – west-southwest shortening that resulted in macroscale folding of the greenstone lithologies. The domain preserves mid-greenschist facies metamorphic grade, with an increase to lower amphibolite metamorphic grade towards the north of the region. As a result of the deformation and metamorphism, individual stratigraphic horizons are difficult to trace continuously throughout the entire domain. Volcanological and sedimentological textures and structures, primary lithological contacts, petrography and geochemistry have been used to correlate lithofacies between faultbounded structural blocks. The correlated stratigraphic sequence for the Boorara Domain comprises quartzo-feldspathic turbidite packages, overlain by high-Mg tholeiitic basalt (lower basalt), coherent and clastic dacite facies, intrusive and extrusive komatiite units, an overlying komatiitic basalt unit (upper basalt), and at the stratigraphic top of the sequence, volcaniclastic quartz-rich turbidites. Reconstruction of the stratigraphy and consideration of emplacement dynamics has allowed reconstruction of the emplacement history and setting of the preserved sequence. This involves a felsic, mafic and ultramafic magmatic system emplaced as high-level intrusions, with localised emergent volcanic centres, into a submarine basin in which active sedimentation was occurring.
Resumo:
This contribution describes two mass movement deposits (total volume ~0.5 km3) identified in seven marine cores located 8 to 15 km offshore southern Montserrat, West Indies. The deposits were emplaced in the last 35 ka and have not previously been recognised in either the subaerial or distal submarine records. Age constraints, provided by radiocarbon dating, show that an explosive volcanic eruption occurred at ca 8–12 ka, emplacing a primary eruption-related deposit that overlies a large (~0.3 km3) reworked bioclastic and volcaniclastic flow deposit, formed from a shelf collapse between 8 and 35 ka. The origin of these deposits has been deduced through the correlation of marine sediment cores, component analysis and geochemical analysis. The 8–12 ka primary volcanic deposit was likely derived from a highly-erosive pyroclastic flow from the Soufrière Hills volcano that entered the ocean and mixed with the water column forming a water-supported density current. Previous investigations of the eruption record suggested that there was a hiatus in activity at the Soufrière Hills volcano between 16 and 6 ka. The ca 8–12 ka eruptive episode identified here shows that this hiatus was shorter than previously hypothesised, and thus highlights the importance of obtaining an accurate and completemarine record of events offshore from volcanic islands and incorporating such data into eruption history reconstructions. Comparisons with the submarine deposit characteristics of the 2003 dome collapse also suggests that the ~8–12 ka eruptive episode was more explosive than eruptions from the current eruptive episode.