973 resultados para Tabu search algorithms
Resumo:
This paper proposes and investigates a metaheuristic tabu search algorithm (TSA) that generates optimal or near optimal solutions sequences for the feedback length minimization problem (FLMP) associated to a design structure matrix (DSM). The FLMP is a non-linear combinatorial optimization problem, belonging to the NP-hard class, and therefore finding an exact optimal solution is very hard and time consuming, especially on medium and large problem instances. First, we introduce the subject and provide a review of the related literature and problem definitions. Using the tabu search method (TSM) paradigm, this paper presents a new tabu search algorithm that generates optimal or sub-optimal solutions for the feedback length minimization problem, using two different neighborhoods based on swaps of two activities and shifting an activity to a different position. Furthermore, this paper includes numerical results for analyzing the performance of the proposed TSA and for fixing the proper values of its parameters. Then we compare our results on benchmarked problems with those already published in the literature. We conclude that the proposed tabu search algorithm is very promising because it outperforms the existing methods, and because no other tabu search method for the FLMP is reported in the literature. The proposed tabu search algorithm applied to the process layer of the multidimensional design structure matrices proves to be a key optimization method for an optimal product development.
Resumo:
This paper proposes and investigates a metaheuristic tabu search algorithm (TSA) that generates optimal or near optimal solutions sequences for the feedback length minimization problem (FLMP) associated to a design structure matrix (DSM). The FLMP is a non-linear combinatorial optimization problem, belonging to the NP-hard class, and therefore finding an exact optimal solution is very hard and time consuming, especially on medium and large problem instances. First, we introduce the subject and provide a review of the related literature and problem definitions. Using the tabu search method (TSM) paradigm, this paper presents a new tabu search algorithm that generates optimal or sub-optimal solutions for the feedback length minimization problem, using two different neighborhoods based on swaps of two activities and shifting an activity to a different position. Furthermore, this paper includes numerical results for analyzing the performance of the proposed TSA and for fixing the proper values of its parameters. Then we compare our results on benchmarked problems with those already published in the literature. We conclude that the proposed tabu search algorithm is very promising because it outperforms the existing methods, and because no other tabu search method for the FLMP is reported in the literature. The proposed tabu search algorithm applied to the process layer of the multidimensional design structure matrices proves to be a key optimization method for an optimal product development.
Resumo:
Phasor Measurement Units (PMUs) optimized allocation allows control, monitoring and accurate operation of electric power distribution systems, improving reliability and service quality. Good quality and considerable results are obtained for transmission systems using fault location techniques based on voltage measurements. Based on these techniques and performing PMUs optimized allocation it is possible to develop an electric power distribution system fault locator, which provides accurate results. The PMUs allocation problem presents combinatorial features related to devices number that can be allocated, and also probably places for allocation. Tabu search algorithm is the proposed technique to carry out PMUs allocation. This technique applied in a 141 buses real-life distribution urban feeder improved significantly the fault location results. © 2004 IEEE.
Resumo:
This paper presents an efficient tabu search algorithm (TSA) to solve the problem of feeder reconfiguration of distribution systems. The main characteristics that make the proposed TSA particularly efficient are a) the way in which the neighborhood of the current solution was defined; b) the way in which the objective function value was estimated; and c) the reduction of the neighborhood using heuristic criteria. Four electrical systems, described in detail in the specialized literature, were used to test the proposed TSA. The result demonstrate that it is computationally very fast and finds the best solutions known in the specialized literature. © 2012 IEEE.
Resumo:
Computerized scheduling methods and computerized scheduling systems according to exemplary embodiments. A computerized scheduling method may be stored in a memory and executed on one or more processors. The method may include defining a main multi-machine scheduling problem as a plurality of single machine scheduling problems; independently solving the plurality of single machine scheduling problems thereby calculating a plurality of near optimal single machine scheduling problem solutions; integrating the plurality of near optimal single machine scheduling problem solutions into a main multi-machine scheduling problem solution; and outputting the main multi-machine scheduling problem solution.
Resumo:
Screening of topologies developed by hierarchical heuristic procedures can be carried out by comparing their optimal performance. In this work we will be exploiting mono-objective process optimization using two algorithms, simulated annealing and tabu search, and four different objective functions: two of the net present value type, one of them including environmental costs and two of the global potential impact type. The hydrodealkylation of toluene to produce benzene was used as case study, considering five topologies with different complexities mainly obtained by including or not liquid recycling and heat integration. The performance of the algorithms together with the objective functions was observed, analyzed and discussed from various perspectives: average deviation of results for each algorithm, capacity for producing high purity product, screening of topologies, objective functions robustness in screening of topologies, trade-offs between economic and environmental type objective functions and variability of optimum solutions.
Resumo:
Assembly job shop scheduling problem (AJSP) is one of the most complicated combinatorial optimization problem that involves simultaneously scheduling the processing and assembly operations of complex structured products. The problem becomes even more complicated if a combination of two or more optimization criteria is considered. This thesis addresses an assembly job shop scheduling problem with multiple objectives. The objectives considered are to simultaneously minimizing makespan and total tardiness. In this thesis, two approaches viz., weighted approach and Pareto approach are used for solving the problem. However, it is quite difficult to achieve an optimal solution to this problem with traditional optimization approaches owing to the high computational complexity. Two metaheuristic techniques namely, genetic algorithm and tabu search are investigated in this thesis for solving the multiobjective assembly job shop scheduling problems. Three algorithms based on the two metaheuristic techniques for weighted approach and Pareto approach are proposed for the multi-objective assembly job shop scheduling problem (MOAJSP). A new pairing mechanism is developed for crossover operation in genetic algorithm which leads to improved solutions and faster convergence. The performances of the proposed algorithms are evaluated through a set of test problems and the results are reported. The results reveal that the proposed algorithms based on weighted approach are feasible and effective for solving MOAJSP instances according to the weight assigned to each objective criterion and the proposed algorithms based on Pareto approach are capable of producing a number of good Pareto optimal scheduling plans for MOAJSP instances.
Resumo:
Large scale combinatorial problems such as the network expansion problem present an amazingly high number of alternative configurations with practically the same investment, but with substantially different structures (configurations obtained with different sets of circuit/transformer additions). The proposed parallel tabu search algorithm has shown to be effective in exploring this type of optimization landscape. The algorithm is a third generation tabu search procedure with several advanced features. This is the most comprehensive combinatorial optimization technique available for treating difficult problems such as the transmission expansion planning. The method includes features of a variety of other approaches such as heuristic search, simulated annealing and genetic algorithms. In all test cases studied there are new generation, load sites which can be connected to an existing main network: such connections may require more than one line, transformer addition, which makes the problem harder in the sense that more combinations have to be considered.
Resumo:
This paper proposes a tabu search approach to solve the Synchronized and Integrated Two-Level Lot Sizing and Scheduling Problem (SITLSP). It is a real-world problem, often found in soft drink companies, where the production process has two integrated levels with decisions concerning raw material storage and soft drink bottling. Lot sizing and scheduling of raw materials in tanks and products in bottling lines must be simultaneously determined. Real data provided by a soft drink company is used to make comparisons with a previous genetic algorithm. Computational results have demonstrated that tabu search outperformed genetic algorithm in all instances. Copyright 2011 ACM.
Resumo:
International audience
Resumo:
The main goal of this paper is to analyze the behavior of nonmono- tone hybrid tabu search approaches when solving systems of nonlinear inequalities and equalities through the global optimization of an appro- priate merit function. The algorithm combines global and local searches and uses a nonmonotone reduction of the merit function to choose the local search. Relaxing the condition aims to call the local search more often and reduces the overall computational e ort. Two variants of a perturbed pattern search method are implemented as local search. An experimental study involving a variety of problems available in the lit- erature is presented.
Resumo:
Solving systems of nonlinear equations is a very important task since the problems emerge mostly through the mathematical modelling of real problems that arise naturally in many branches of engineering and in the physical sciences. The problem can be naturally reformulated as a global optimization problem. In this paper, we show that a self-adaptive combination of a metaheuristic with a classical local search method is able to converge to some difficult problems that are not solved by Newton-type methods.
Resumo:
Solving systems of nonlinear equations is a problem of particular importance since they emerge through the mathematical modeling of real problems that arise naturally in many branches of engineering and in the physical sciences. The problem can be naturally reformulated as a global optimization problem. In this paper, we show that a metaheuristic, called Directed Tabu Search (DTS) [16], is able to converge to the solutions of a set of problems for which the fsolve function of MATLAB® failed to converge. We also show the effect of the dimension of the problem in the performance of the DTS.
Resumo:
This papers aims at providing a combined strategy for solving systems of equalities and inequalities. The combined strategy uses two types of steps: a global search step and a local search step. The global step relies on a tabu search heuristic and the local step uses a deterministic search known as Hooke and Jeeves. The choice of step, at each iteration, is based on the level of reduction of the l2-norm of the error function observed in the equivalent system of equations, compared with the previous iteration.
Resumo:
This paper presents an Optimised Search Heuristic that combines a tabu search method with the verification of violated valid inequalities. The solution delivered by the tabu search is partially destroyed by a randomised greedy procedure, and then the valid inequalities are used to guide the reconstruction of a complete solution. An application of the new method to the Job-Shop Scheduling problem is presented.