932 resultados para TUMOR-BEARING MICE
Resumo:
Agaricus blazei Murrill, is an edible and medicinal mushroom which is popularly consumed due to its antitumoral properties. The immunomodulatory effects of methanol (METH), dichloromethane (DM) and n-hexane (HEX) extracts of this mushroom were evaluated in Ehrlich tumor-bearing mice. Subcutaneous inoculation of Ehrlich tumor cells inhibited the natural killer (NK) activity of spleen cells (specific lysis = 6.18 +/- 2.56%) compared with normal mice (17.59 +/- 7.77%). Treatment of tumor-bearing mice with the extracts for 10 days restored the natural killer activity against Yac-1 target cells and the best results were observed by treatment with the HEX extract (21.48 +/- 15.26%). Treatment of the animals with the HEX extract for 10 days was also able to stimulate the mitogen-induced lymphoproliferative activity of spleen cells. Thirty days after the treatment, all groups presented low proliferative activity. Specific antibody production was observed to be higher in the groups treated with the DM or METH extract 30 days after the treatment. Analysis of the 3 extracts by gas chromatography mass spectrum (GCMS) and magnetic nuclear resonance (MNR) showed that the HEX extract contains mainly sugar and fatty acids and that the METH extract also contains sugar and possibly amino acids. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We assessed the suitability of the radiolanthanide 155 Tb (t1/2 = 5.32 days, Eγ = 87 keV (32%), 105 keV (25%)) in combination with variable tumor targeted biomolecules using preclinical SPECT imaging. Methods 155Tb was produced at ISOLDE (CERN, Geneva, Switzerland) by high-energy (~ 1.4 GeV) proton irradiation of a tantalum target followed by ionization and on-line mass separation. 155 Tb was separated from isobar and pseudo-isobar impurities by cation exchange chromatography. Four tumor targeting molecules – a somatostatin analog (DOTATATE), a minigastrin analog (MD), a folate derivative (cm09) and an anti-L1-CAM antibody (chCE7) – were radiolabeled with 155 Tb. Imaging studies were performed in nude mice bearing AR42J, cholecystokinin-2 receptor expressing A431, KB, IGROV-1 and SKOV-3ip tumor xenografts using a dedicated small-animal SPECT/CT scanner. Results The total yield of the two-step separation process of 155 Tb was 86%. 155 Tb was obtained in a physiological l-lactate solution suitable for direct labeling processes. The 155 Tb-labeled tumor targeted biomolecules were obtained at a reasonable specific activity and high purity (> 95%). 155 Tb gave high quality, high resolution tomographic images. SPECT/CT experiments allowed excellent visualization of AR42J and CCK-2 receptor-expressing A431 tumors xenografts in mice after injection of 155 Tb-DOTATATE and 155 Tb-MD, respectively. The relatively long physical half-life of 155 Tb matched in particular the biological half-lives of 155 Tb-cm09 and 155 Tb-DTPA-chCE7 allowing SPECT imaging of KB tumors, IGROV-1 and SKOV-3ip tumors even several days after administration. Conclusions The radiolanthanide 155 Tb may be of particular interest for low-dose SPECT prior to therapy with a therapeutic match such as the β--emitting radiolanthanides 177Lu, 161 Tb, 166Ho, and the pseudo-radiolanthanide 90Y.
Resumo:
Studies of mouse models of human cancer have established the existence of multiple tumor modifiers that influence parameters of cancer susceptibility such as tumor multiplicity, tumor size, or the probability of malignant progression. We have carried out an analysis of skin tumor susceptibility in interspecific Mus musculus/Mus spretus hybrid mice and have identified another seven loci showing either significant (six loci) or suggestive (one locus) linkage to tumor susceptibility or resistance. A specific search was carried out for skin tumor modifier loci associated with time of survival after development of a malignant tumor. A combination of resistance alleles at three markers [D6Mit15 (Skts12), D7Mit12 (Skts2), and D17Mit7 (Skts10)], all of which are close to or the same as loci associated with carcinoma incidence and/or papilloma multiplicity, is significantly associated with increased survival of mice with carcinomas, whereas the reverse combination of susceptibility alleles is significantly linked to early mortality caused by rapid carcinoma growth (χ2 = 25.22; P = 5.1 × 10−8). These data indicate that host genetic factors may be used to predict carcinoma growth rate and/or survival of individual backcross mice exposed to the same carcinogenic stimulus and suggest that mouse models may provide an approach to the identification of genetic modifiers of cancer survival in humans.
Resumo:
Cohabitation for 14 days with Ehrlich tumor-bearing mice was shown to increase locomotor activity, to decrease hypothalamic noradrenaline (NA) levels, to increase NA turnover and to decrease innate immune responses and decrease the animals' resistance to tumor growth. Cage mates of a B16F10 melanoma-bearer mice were also reported to show neuroimmune changes. Chemosignals released by Ehrlich tumor-bearing mice have been reported to be relevant for the neutrophil activity changes induced by cohabitation. The present experiment was designed to further analyze the effects of odor cues on neuroimmune changes induced by cohabitation with a sick cage mate. Specifically, the relevance of chemosignals released by an Ehrlich tumor-bearing mouse was assessed on the following: behavior (open-field and plus maze); hypothalamic NA levels and turnover; adrenaline (A) and NA plasmatic levels; and host resistance induced by tumor growth. To comply with such objectives, devices specifically constructed to analyze the influence of chemosignals released from tumor-bearing mice were employed. The results show that deprivation of odor cues released by Ehrlich tumor-bearing mice reversed the behavioral, neurochemical and immune changes induced by cohabitation. Mice use scents for intraspecies communication in many social contexts. Tumors produce volatile organic compounds released into the atmosphere through breath, sweat, and urine. Our results strongly suggest that volatile compounds released by Ehrlich tumor-injected mice are perceived by their conspecifics, inducing the neuroimmune changes reported for cohabitation with a sick companion. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work we have:investigated the growth and differentiation of bone marrow stem cells in mice bearing Ehrlich ascites tumor-and treated with three dose-regimens of Dicyclopentadienyldichlorotitanium (IV) (DDCT). We also: studied the presence of colony stimulating factors In the serum of PDCT-treated animals as well-as the effects-of the drug on the survival of the tumor-bearing mice. The-results demonstrated that the myelosuppression developed in the tumor-bearing animals is prevented by the administration:of 1, 2 or 3 doses of 15 mg/kg DDCT. In the treatment with three doses, however, 23 % of the animals died. Moreover, DDCT treatment in normal animals resulted in increased numbers of CFU-GM. We observed the presence of stimulating factors in the serum of drug-treated animals which induced the growth and differentiation of bone marrow progenitor cells from normal animals in vitro. on the other hand, in vitro addition of the drug to these cultures had no effect. Thus, we conclude that the drug protects against the myelosuppression induced by the tumor and that this protection may be related to an indirect action of the drug. (C) 1998 International Society for Immunopharmacology. Published by Elsevier B.V. Ltd.
Resumo:
Prostate stem-cell antigen (PSCA) is a cell-surface antigen expressed in normal prostate and overexpressed in prostate cancer tissues. PSCA expression is detected in over 80% of patients with local disease, and elevated levels of PSCA are correlated with increased tumor stage, grade, and androgen independence, including high expression in bone metastases. We evaluated the therapeutic efficacy of anti-PSCA mAbs in human prostate cancer xenograft mouse models by using the androgen-dependent LAPC-9 xenograft and the androgen-independent recombinant cell line PC3-PSCA. Two different anti-PSCA mAbs, 1G8 (IgG1κ) and 3C5 (IgG2aκ), inhibited formation of s.c. and orthotopic xenograft tumors in a dose-dependent manner. Furthermore, administration of anti-PSCA mAbs led to retardation of established orthotopic tumor growth and inhibition of metastasis to distant sites, resulting in a significant prolongation in the survival of tumor-bearing mice. These studies suggest PSCA as an attractive target for immunotherapy and demonstrate the therapeutic potential of anti-PSCA mAbs for the treatment of local and metastatic prostate cancer.
Resumo:
A major group of murine NK T (NKT) cells express an invariant Vα14Jα18 TCR α-chain specific for glycolipid Ags presented by CD1d. Murine Vα14Jα18+ account for 30–50% of hepatic T cells and have potent antitumor activities. We have enumerated and characterized their human counterparts, Vα24Vβ11+ NKT cells, freshly isolated from histologically normal and tumor-bearing livers. In contrast to mice, human NKT cells are found in small numbers in healthy liver (0.5% of CD3+ cells) and blood (0.02%). In contrast to those in blood, most hepatic Vα24+ NKT cells express the Vβ11 chain. They include CD4+, CD8+, and CD4−CD8− cells, and many express the NK cell markers CD56, CD161, and/or CD69. Importantly, human hepatic Vα24+ T cells are potent producers of IFN-γ and TNF-α, but not IL-2 or IL-4, when stimulated pharmacologically or with the NKT cell ligand, α-galactosylceramide. Vα24+Vβ11+ cell numbers are reduced in tumor-bearing compared with healthy liver (0.1 vs 0.5%; p < 0.04). However, hepatic cells from cancer patients and healthy donors release similar amounts of IFN-γ in response to α-galactosylceramide. These data indicate that hepatic NKT cell repertoires are phenotypically and functionally distinct in humans and mice. Depletions of hepatic NKT cell subpopulations may underlie the susceptibility to metastatic liver disease.
Resumo:
Polycyclic aromatic molecules such as ellipticine intercalate into double-stranded DNA and interfere with physiological functions. In the present study, we evaluate the chemotherapeutic potential of MPTQ on animal models and its mode of action. In order to test the antitumor activity, monohydrochloride of MPTQ was orally administered in mice bearing tumor. Results showed a significant inhibition of tumor growth compared to that of untreated controls. More importantly, mean lifespan of tumor bearing animals treated with MPTQ was significantly higher as compared to that of untreated tumor bearing mice suggesting that the treatment affected viability of cancerous cells, but not of normal cells. Consistent with this, we find that administration of MPTQ to normal mice did not cause any major side effects as observed upon hematological and serum profiling. We also found that MPTQ induces cytotoxicity in cancer cell lines, by activating apoptosis both by intrinsic and extrinsic pathways. Thus, MPTQ could be used as a potential cancer therapeutic agent.
Resumo:
Polycyclic aromatic molecules such as ellipticine intercalate into double-stranded DNA and interfere with physiological functions. In the present study, we evaluate the chemotherapeutic potential of MPTQ on animal models and its mode of action. In order to test the antitumor activity, monohydrochloride of MPTQ was orally administered in mice bearing tumor. Results showed a significant inhibition of tumor growth compared to that of untreated controls. More importantly, mean lifespan of tumor bearing animals treated with MPTQ was significantly higher as compared to that of untreated tumor bearing mice suggesting that the treatment affected viability of cancerous cells, but not of normal cells. Consistent with this, we find that administration of MPTQ to normal mice did not cause any major side effects as observed upon hematological and serum profiling. We also found that MPTQ induces cytotoxicity in cancer cell lines, by activating apoptosis both by intrinsic and extrinsic pathways. Thus, MPTQ could be used as a potential cancer therapeutic agent. (c) 2011 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
SJL mice spontaneously develop pre-B-cell lymphoma that we hypothesized might stimulate macrophages to produce nitric oxide (NO.). Transplantation of an aggressive lymphoma (RcsX) was used to induce tumor formation. Urinary nitrate excretion was measured as an index of NO. production and was found to increase 50-fold by 13 days after tumor injection. NO. production was prevented by the addition of a nitric oxide synthase (NOS) inhibitor. The expression of inducible NOS (iNOS) in various tissues was estimated by Western blot analysis and localized by immunohistochemistry. The synthase was detected in the spleen, lymph nodes, and liver of treated but not control mice. To assess whether the iNOS-staining cells were macrophages, spleen sections from ResX-bearing animals were costained with anti-iNOS antibody and the anti-macrophage antibody moma-2. Expression of iNOS was found to be limited to a subset of the macrophage population. The concentration of gamma-interferon, a cytokine known to induce NO. production by macrophages, in the serum of tumor-bearing mice, was measured and found to be elevated 25-fold above untreated mice. The ability of ResX-activated macrophages to inhibit splenocyte growth in primary culture was estimated and macrophage-derived NO. was found to inhibit cell division 10-fold. Our findings demonstrate that ResX cells stimulate NO. production by macrophages in the spleen and lymph nodes of SJL mice, and we believe this experimental model will prove useful for study of the toxicological effects of NO. under physiological conditions.
Resumo:
Purpose: To evaluate the antitumor activity of doxorubicine (DOX)-loaded nanoemulsion (NE) on Ehrlich ascites carcinoma (EAC)-bearing Swiss albino mice. Methods: The mice were divided into five groups (n = 20) according to the administered drug. Groups I - V were labeled as negative control (normal), positive control of the untreated EAC bearing mice (EAC control), blank nanoemulsion (BI-NE), DOX-loaded-NE (DOX/LNE) and free DOX (DOX-Sol), respectively. Cardiotoxicity was assessed by measuring changes in body and organ weight, analyzing serum enzymes and lipids, and examining histological changes in heart tissues by light microscopy. In addition, mean survival time (MST), increase in life span (ILS) and survival (S) of the mice were determined. Results: DOX/LNE group reduced levels of serum enzymes and lowered damage to heart tissues relative to DOX-Sol group. The MST of the DOX/LNE group (80 ± 0.0 days) was significantly greater than that for DOX-Sol group (34.6 ± 8.9 days), while ILS of DOX/LNE (265.30 days) was higher than that of DOX-Sol (57.99 days) by 4.6-fold. Conclusion: Administration of DOX/LNE to EAC-bearing mice improves the efficacy of DOX and reduce its side effects on the heart.