960 resultados para TMI SST
Resumo:
The impact of realistic representation of sea surface temperature (SST) on the numerical simulation of track and intensity of tropical cyclones formed over the north Indian Ocean is studied using the Weather Research and Forecast (WRF) model. We have selected two intense tropical cyclones formed over the Bay of Bengal for studying the SST impact. Two different sets of SSTs were used in this study: one from TRMM Microwave Imager (TMI) satellite and other is the weekly averaged Reynold's SST analysis from National Center for Environmental Prediction (NCEP). WRF simulations were conducted using the Reynold's and TMI SST as model boundary condition for the two cyclone cases selected. The TMI SST which has a better temporal and spatial resolution showed sharper gradient when compared to the Reynold's SST. The use of TMI SST improved the WRF cyclone intensity prediction when compared to that using Reynold's SST for both the cases studied. The improvements in intensity were mainly due to the improved prediction of surface latent and sensible heat fluxes. The use of TMI SST in place of Reynold's SST improved cyclone track prediction for Orissa super cyclone but slightly degraded track prediction for cyclone Mala. The present modeling study supports the well established notion that the horizontal SST gradient is one of the major driving forces for the intensification and movement of tropical cyclones over the Indian Ocean.
Resumo:
Evolution of mini warm pool in the Arabian Sea just before the onset of southwest monsoon and behavior of SST in the vicinity of weather systems formed during the premonsoon, southwest monsoon and post monsoon seasons were studied using TMI SST data. The Arabian Sea mini warm pool is formed about three weeks ahead of onset of southwest monsoon. Maximum SST is found about one week ahead of monsoon onset and then the warm pool gradually dissipated. Generally, a low-pressure system is formed when the SST exceeds a certain threshold value for the formation of the system. Daily SST values are examined both in Arabian sea and Bay of Bengal to bring out the quantity of increase in SST just before the formation of the system, quantity of rapid decrease in SST during the formation of the system and the number of days required for returning to normal SST. Many cases were examined for pre-monsoon, southwest monsoon and post monsoon seasons to understand the behavior of SST pattern. It is found that the SST increases about 3° C just before the formation of the system and decreases about 4° C during the formation within 2 to 3 days and takes about 4 to 6 days to return to normal SST pattern. However, the SST pattern depends on the weather system
Resumo:
The present study on upper ocean responses to atmospheric forcing (associated with cyclone passage) in North Indian Ocean revealed significant variability between AS and BoB. The analysis of cyclone frequency during 1947 to 2006 exhibited lesser frequency of cyclones in AS than that of BoB. The analysis also revealed significant reduction in cyclone frequency after the year 1976 with substantial reduction during monsoon season. The long term SST data at selected points in AS and BoB could not reveal any relation with reduction in cyclone frequency. However the SLP at same locations exhibited considerable increase during mid 1970’s, which could have contributed to the observed reduction in cyclone frequency after the year 1976.The response in waves during cyclone passage exhibited significant asymmetry on either side of the track in AS and BoB and the response is observed at 100’s of kilometers away from the track. The significant clockwise rotation in wave direction is observed on the right side of the track starting from near the track to far away locations, which existed for a longer duration. However, the anticlockwise rotation in wave direction is observed over a shorter distance on the left side of the track and dissipated immediately.Inertial oscillation is observed in surface current and in the mixed layer temperature associated with cyclone passage, which revealed the role of relative location(s) on either side of the track. The inertial peak closer to the local inertial period indicates maximum transfer of energy during the cyclone passage in both AS and BoB. The absence of strong inertial oscillation even with clockwise rotation in surface current and wind indicates the dominant role of duration of strong wind in generating inertial oscillation.The oceanic response associated with cyclone passage reveal the variable response(s) which depends on cyclone intensity, the proximity to track and cyclone translation speed. It is observed that resonance with wind generates higher response in surface current, wave and SST on the right side of the track and it lasts for a longer duration. The maximum oceanic response is observed at a few kilometers away on right side of the track. However lesser rightward bias in the location of maximum cooling is observed for cyclones with low cyclone translation speed. The response on the left side of the track is less and is limited over a shorter distance and dissipates immediately. It is observed that the ocean response, in general, increases with intensity of cyclones. However the differential cooling produced by the same intensity cyclones in AS and in BoB indicates the dominant role of low cyclone translation speed in oceanic response.The surface cooling exhibited strikingly differential responses between AS and BoB. The TMI-SST and buoy observations exhibited significant cooling for a longer duration in AS compared to that of BoB. The spatial extent of cooling is also much higher in AS than that of BoB. The wide spread cooling associated with cyclone passage in AS indicates the dominant role of thermal structure in oceanic response in AS than that of BoB.
Resumo:
The intraseasonal variability (ISV) of the Indian summer monsoon is dominated by a 30–50 day oscillation between “active” and “break” events of enhanced and reduced rainfall over the subcontinent, respectively. These organized convective events form in the equatorial Indian Ocean and propagate north to India. Atmosphere–ocean coupled processes are thought to play a key role the intensity and propagation of these events. A high-resolution, coupled atmosphere–mixed-layer-oceanmodel is assembled: HadKPP. HadKPP comprises the Hadley Centre Atmospheric Model (HadAM3) and the K Profile Parameterization (KPP) mixed-layer ocean model. Following studies that upper-ocean vertical resolution and sub-diurnal coupling frequencies improve the simulation of ISV in SSTs, KPP is run at 1 m vertical resolution near the surface; the atmosphere and ocean are coupled every three hours. HadKPP accurately simulates the 30–50 day ISV in rainfall and SSTs over India and the Bay of Bengal, respectively, but suffers from low ISV on the equator. This is due to the HadAM3 convection scheme producing limited ISV in surface fluxes. HadKPP demonstrates little of the observed northward propagation of intraseasonal events, producing instead a standing oscillation. The lack of equatorial ISV in convection in HadAM3 constrains the ability of KPP to produce equatorial SST anomalies, which further weakens the ISV of convection. It is concluded that while atmosphere–ocean interactions are undoubtedly essential to an accurate simulation of ISV, they are not a panacea for model deficiencies. In regions where the atmospheric forcing is adequate, such as the Bay of Bengal, KPP produces SST anomalies that are comparable to the Tropical Rainfall Measuring Mission Microwave Imager (TMI) SST analyses in both their magnitude and their timing with respect to rainfall anomalies over India. HadKPP also displays a much-improved phase relationship between rainfall and SSTs over a HadAM3 ensemble forced by observed SSTs, when both are compared to observations. Coupling to mixed-layer models such as KPP has the potential to improve operational predictions of ISV, particularly when the persistence time of SST anomalies is shorter than the forecast lead time.
Resumo:
Background: The Simple Shoulder Test (SST-Sp) is a widely used outcome measure. Objective: The purpose of this study was to develop and validate a Spanish-version SST (SST-Sp). Methods: A two-stage observational study was conducted. The SST was initially cross-culturally adapted to Spanish through double forward and backward translation and then validated for its psychometric characteristics. Participants (n = 66) with several shoulder disorders completed the SST-Sp, DASH, VAS and SF-12. The full sample was employed to determine factor structure, internal consistency and concurrent criterion validity. Reliability was determined in the first 24–48 h in a subsample of 21 patients. Results: The SST-Sp showed three factors that explained the 56.1 % of variance, and the internal consistency for each factor was α = 0.738, 0.723 and 0.667, and reliability was ICC = 0.687–0.944. The factor structure was three-dimensional and supported construct validity. Criterion validity determined from the relationship between the SST-Sp and DASH was strong (r = −0.73; p < 0.001) and fair for VAS (r = −0.537; p < 0.001). Relationships between SST-Sp and SF-12 were weak for both physical (r = −0.47; p < 0.001) and mental (r = −0.43; p < 0.001) dimensions. Conclusions: The SST-Sp supports the findings of the original English version as being a valid shoulder outcome measure with similar psychometric properties to the original English version.
Resumo:
High-resolution data from the TRMM satellite shows that sea surface temperature (SST) cools by 3 degrees C under the tracks of pre-monsoon tropical cyclones in the north Indian Ocean. However, even the strongest post-monsoon cyclones do not cool the open north Bay of Bengal. In this region, a shallow layer of freshwater from river runoff and monsoon rain caps a deep warm layer. Therefore, storm-induced mixing is not deep, and it entrains warm subsurface water. It is possible that the hydrography of the post-monsoon north Bay favours intense cyclones.
Resumo:
A link between the Atlantic Multidecadal Oscillation (AMO) and multidecadal variability of the Indian summer monsoon rainfall is unraveled and a long sought physical mechanism linking Atlantic climate and monsoon has been identified. The AMO produces persistent weakening (strengthening) of the meridional gradient of tropospheric temperature (TT) by setting up negative (positive) TT anomaly over Eurasia during northern late summer/autumn resulting in early (late) withdrawal of the south west monsoon and persistent decrease (increase) of seasonal monsoon rainfall. On inter-annual time scales, strong North Atlantic Oscillation (NAO) or North Annular mode (NAM) influences the monsoon by producing similar TT anomaly over Eurasia. The AMO achieves the interdecadal modulation of the monsoon by modulating the frequency of occurrence of strong NAO/NAM events. This mechanism also provides a basis for explaining the observed teleconnection between North Atlantic temperature and the Asian monsoon in paleoclimatic proxies. Citation: Goswami, B. N., M. S. Madhusoodanan, C. P. Neema, and D. Sengupta (2006), A physical mechanism for North Atlantic SST influence on the Indian summer monsoon
Resumo:
A novel vinyl monomer with an isocyanate functional group, m-isopropenyl-alpha,alpha-dimethylbenzyl-isocyanate (m-TMI), was grafted onto isotactic polypropylene (i-PP) using dicumyl peroxide (DCP) as the initiator. This would open up the possibility of using the grafted polymer with the reactive isocyanate group as compatibilizer for blending carbohydrates such as cellulose with. polypropylene. The grafting was carried out in a Brabender Plasticoder at 180degreesC. The effects of monomer and initiator concentrations on the yield of grafting were investigated by performing statistical analysis. While the grafting yield increased with the concentration of DCP at any given concentration of m-TMI, the variation of the grafting yield with m-TMI concentration, for a given concentration of DCP, went through a maximum, the optimum yield of 7.8% (w/w) being obtained at 10 wt.% concentration of both DCP and m-TMI. The grafting reaction is. accompanied by considerable chain scission of I-PP, resulting in a decrease in the molecular weight of the grafted polymer. While the molecular weight drops sharply even at a low concentration of DCP, there occurs no further significant change in the molecular weight even at much higher concentrations of the initiator.
Resumo:
The failure of atmospheric general circulation models (AGCMs) forced by prescribed SST to simulate and predict the interannual variability of Indian/Asian monsoon has been widely attributed to their inability to reproduce the actual sea surface temperature (SST)-rainfall relationship in the warm Indo-Pacific oceans. This assessment is based on a comparison of the observed and simulated correlation between the rainfall and local SST. However, the observed SSTconvection/rainfall relationship is nonlinear and for this a linear measure such as the correlation is not an appropriate measure. We show that the SST-rainfall relationship simulated by atmospheric and coupled general circulation models in IPCC AR4 is nonlinear, as observed, and realistic over the tropical West Pacific (WPO) and the Indian Ocean (IO). The SST-rainfall pattern simulated by the coupled versions of these models is rather similar to that from the corresponding atmospheric one, except for a shift of the entire pattern to colder/warmer SSTs when there is a cold/warm bias in the coupled version.
Resumo:
The effect of meridional variation of sea surface temperature (SST) on tropical atmospheric circulation is analyzed using Aqua-planet Experiment (APE) simulations. The meridional SST gradient around the narrow SST peak in CONTROL simulation favours a strong and single equatorial Intertropical Convergence Zone (ITCZ, defined by the maximum of zonally averaged total precipitation) in all APE models. In contrast, flat equatorial SST peak (FLAT simulation) favours split/double ITCZs flanking the SST maximum, in the majority of the APE models. Although there is reasonable agreement for SST sensitivity of ITCZ among the APE models in CONTROL, there exists disparity among them in FLAT case. Similarly, while the total and convective precipitation responses are consistent among the models, the large-scale precipitation response shows considerable inter-model variations in FLAT case. The APE intercomparison indicates that the occurrence and positioning of the ITCZ are primarily related to boundary layer moisture convergence as a response to the meridional variation of SST. Furthermore, the meridional gradient of tropospheric temperature is found to be an important factor that can influence the positioning of ITCZ. FLAT SST distribution is found to be similar to the observed distribution over the Indian region during summer season. Models that yield double ITCZs in this case simulate an easterly jet over the equatorial region (similar to 15 degrees equatorward of the ITCZ). This is analogous to the Tropical Easterly Jet (TEJ), which is a unique feature observed over the Indian region during summer monsoon season, with its core at 12 degrees N, equatorward of the seasonal convergence zone centered along 25 degrees N. In these models, positive meridional temperature gradient and the associated easterly shear in the atmosphere strengthened by moisture convergence penetrate up to the upper troposphere, with which TEJ is in thermal wind balance.
Resumo:
Overland rain retrieval using spaceborne microwave radiometer offers a myriad of complications as land presents itself as a radiometrically warm and highly variable background. Hence, land rainfall algorithms of the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) have traditionally incorporated empirical relations of microwave brightness temperature (Tb) with rain rate, rather than relying on physically based radiative transfer modeling of rainfall (as implemented in the TMI ocean algorithm). In this paper, sensitivity analysis is conducted using the Spearman rank correlation coefficient as benchmark, to estimate the best combination of TMI low-frequency channels that are highly sensitive to the near surface rainfall rate from the TRMM Precipitation Radar (PR). Results indicate that the TMI channel combinations not only contain information about rainfall wherein liquid water drops are the dominant hydrometeors but also aid in surface noise reduction over a predominantly vegetative land surface background. Furthermore, the variations of rainfall signature in these channel combinations are not understood properly due to their inherent uncertainties and highly nonlinear relationship with rainfall. Copula theory is a powerful tool to characterize the dependence between complex hydrological variables as well as aid in uncertainty modeling by ensemble generation. Hence, this paper proposes a regional model using Archimedean copulas, to study the dependence of TMI channel combinations with respect to precipitation, over the land regions of Mahanadi basin, India, using version 7 orbital data from the passive and active sensors on board TRMM, namely, TMI and PR. Studies conducted for different rainfall regimes over the study area show the suitability of Clayton and Gumbel copulas for modeling convective and stratiform rainfall types for the majority of the intraseasonal months. Furthermore, large ensembles of TMI Tb (from the most sensitive TMI channel combination) were generated conditional on various quantiles (25th, 50th, 75th, and 95th) of the convective and the stratiform rainfall. Comparatively greater ambiguity was observed to model extreme values of the convective rain type. Finally, the efficiency of the proposed model was tested by comparing the results with traditionally employed linear and quadratic models. Results reveal the superior performance of the proposed copula-based technique.
Resumo:
In this study, the Tropical Rainfall Measurement Mission based Microwave Imager estimates (2A12) have been used to compare and contrast the characteristics of cloud liquid water and ice over the Indian land region and the ocean surrounding it, during the premonsoon (May) and monsoon (June-September) seasons. Based on the spatial homogeneity of rainfall, we have selected five regions for our study (three over ocean, two over land). Comparison across three ocean regions suggests that the cloud liquid water (CLW) over the orographically influenced Arabian Sea (close to the Indian west coast) behaves differently from the CLW over a trapped ocean (Bay of Bengal) or an open ocean (equatorial Indian Ocean). Specifically, the Arabian Sea region shows higher liquid water for a lower range of rainfall, whereas the Bay of Bengal and the equatorial Indian Ocean show higher liquid water for a higher range of rainfall. Apart from geographic differences, we also documented seasonal differences by comparing CLW profiles between monsoon and premonsoon periods, as well as between early and peak phases of the monsoon. We find that the CLW during the lean periods of rainfall (May or June) is higher than during the peak and late monsoon season (July-September) for raining clouds. As active and break phases are important signatures of the monsoon progression, we also analysed the differences in CLW during various phases of the monsoon, namely, active, break, active-to-break and break-to-active transition phases. We find that the cloud liquid water content during the break-to-active transition phase is significantly higher than during the active-to-break transition phase over central India. We speculate that this could be attributed to higher amount of aerosol loading over this region during the break phase. We lend credence to this aerosol-CLW/rain association by comparing the central Indian CLW with that over southeast Asia (where the aerosol loading is significantly smaller) and find that in the latter region, there are no significant differences in CLW during the different phases of the monsoon. While our hypothesis needs to be further investigated with numerical models, the results presented in this study can potentially serve as a good benchmark in evaluating the performance of cloud resolving models over the Indian region.
Resumo:
The physical environment of eastern boundary current systems is rarely uniform in time. ENSO and other perturbations produce profound anomalies in the atmosphere and ocean on interannual to decadal and century time scales. ... The objective of this paper is to describe the temporal variability in the spatial texture of the California Current system, a major eastern boundary current system off the west coast of North America, to provide a base from which to evaluate the effect of climate change - in the recent past, at present, and for the future.