999 resultados para THROMBOXANE A(2)
Resumo:
Background and purpose: The present study was designed to assess whether cyclooxygenase-2 (COX-2) activation is involved in the effects of chronic aldosterone treatment on endothelial function of mesenteric resistance arteries (MRA) from Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Experimental approach: Relaxation to acetylcholine was measured in MRA from both untreated and aldosterone-treated strains. Vasomotor responses to prostacyclin and U46619 were also analysed. Release of 6-oxo-prostaglandin (PG)F(1 alpha) and thromboxane B(2) (TxB(2)) was determined by enzyme immunoassay. COX-2 protein expression was measured by western blot. Key results: Aldosterone reduced acetylcholine relaxation in MRA from both strains. In MRA from both aldosterone-treated strains the COX-1/2 or COX-2 inhibitor (indomethacin and NS-398, respectively), Tx2 synthesis inhibitor (furegrelate), prostacyclin synthesis inhibitor (tranylcypromine) or Tx2/PG2 receptor antagonist (SQ 29 548), but not COX-1 inhibitor SC-560, increased acetylcholine relaxation. In untreated rats this response was increased only in SHR. Prostacyclin elicited a biphasic vasomotor response: lower concentrations elicited relaxation, whereas higher concentrations elicited contraction that was reduced by SQ 29 548. Aldosterone increased the acetylcholine-stimulated production of 6-oxo-PGF(1 alpha) and TxB(2) in MRA from both strains. COX-2 expression was higher in both strains of rats treated with aldosterone. Conclusions and implications: Chronic treatment with aldosterone impaired endothelial function in MRA under normotensive and hypertensive conditions by increasing COX-2-derived prostacyclin and thromboxane A(2). As endothelial dysfunction participates in the pathogenesis of many cardiovascular disorders we hypothesize that anti-inflammatory drugs, specifically COX-2 inhibitors, could ameliorate vascular damage in patients with elevated aldosterone production.
Resumo:
Collagen and collagen-related peptide (CRP) activate platelets by interacting with glycoprotein (GP)VI. In addition, collagen binds to integrin alpha(2)beta(1) and possibly to other receptors. In this study, we have compared the role of integrins alpha(2)beta(1) and alpha(IIb)beta(3) in platelet activation induced by collagen and CRP. Inhibitors of ADP and thromboxane A(2) (TxA(2)) substantially attenuated collagen-induced platelet aggregation and dense granule release, whereas CRP-induced responses were only partially inhibited. Under these conditions, a proportion of platelets adhered to the collagen fibres resulting in dense granule release and alpha(IIb)beta(3) activation. This adhesion was substantially mediated by alpha(2)beta(1). The alpha(IIb)beta(3) antagonist lotrafiban potentiated CRP-induced dense granule release, suggesting that alpha(IIb)beta(3) outside-in signalling may attenuate GPVI signals. By contrast, lotrafiban inhibited collagen-induced dense granule release. These results emphasise the differential roles of alpha(2)beta(1) and alpha(IIb)beta(3) in platelet activation induced by collagen and CRP. Further, they show that although ADP and TxA(2) greatly facilitate collagen-induced platelet activation, collagen can induce full activation of those platelets to which it binds in the absence of these mediators, via a mechanism that is dependent on adhesion to alpha(2)beta(1).
Resumo:
NO/prostanoid independent, EDHF-mediated hyperpolarization and dilation in rat middle cerebral arteries is mediated solely by endothelial cell IK(Ca). However, when the NO-pathway is also active, both SK(Ca) and IK(Ca) contribute to EDHF responses. As the SK(Ca) component can be inhibited by stimulation of thromboxane A(2) (TxA(2)) TP receptors and NO has the potential ability to inhibit thromboxane synthesis, we investigated whether TxA(2) might explain loss of functional input from SK(Ca) during NOS inhibition in cerebral arteries. EXPERIMENTAL APPROACH: Rat middle cerebral arteries were mounted in a wire myograph. Endothelium-dependent responses to the PAR2 agonist, SLIGRL were assessed as simultaneous changes in smooth muscle membrane potential and tension. KEY RESULTS: Responses were obtained in the presence of L-NAME as appropriate. Inhibition of TP receptors with either ICI 192,605 or SQ 29,548, did not affect EDHF mediated hyperpolarization and relaxation, but in their presence neither TRAM-34 nor apamin (to block IK(Ca) and SK(Ca) respectively) individually affected the EDHF response. However, in combination they virtually abolished it. Similar effects were obtained in the presence of the thromboxane synthase inhibitor, furegrelate, which additionally revealed an iberiotoxin-sensitive residual EDHF hyperpolarization and relaxation in the combined presence of TRAM-34 and apamin. CONCLUSIONS AND IMPLICATIONS: In the rat middle cerebral artery, inhibition of NOS leads to a loss of the SK(Ca) component of EDHF responses. Either antagonism of TP receptors or block of thromboxane synthase restores an input through SK(Ca). These data indicate that NO normally enables SK(Ca) activity in rat middle cerebral arteries.
Resumo:
The C-type lectin-like receptor 2 (CLEC-2) activates platelets through Src and Syk tyrosine kinases via a single cytoplasmic YxxL motif known as a hem immunoreceptor tyrosine-based activation motif (hemITAM). Here, we demonstrate using sucrose gradient ultracentrifugation and methyl-beta-cyclodextrin treatment that CLEC-2 translocates to lipid rafts upon ligand engagement and that translocation is essential for hemITAM phosphorylation and signal initiation. HemITAM phosphorylation, but not translocation, is also critically dependent on actin polymerization, Rac1 activation, and release of ADP and thromboxane A(2) (TxA(2)). The role of ADP and TxA(2) in mediating phosphorylation is dependent on ligand engagement and rac activation but is independent of platelet aggregation. In contrast, tyrosine phosphorylation of the GPVI-FcRgamma-chain ITAM, which has 2 YxxL motifs, is independent of actin polymerization and secondary mediators. These results reveal a unique series of proximal events in CLEC-2 phosphorylation involving actin polymerization, secondary mediators, and Rac activation.
Resumo:
We evaluated the effects of high molecular-weight phlorotannins from Sargassum thunbergii (STP) on ADP-induced platelet aggregation and arachidonic acid (AA) metabolism in New Zealand white rabbits and Wistar rats. The inhibition of STP on platelet aggregation was investigated using a turbidimetric method, and the levels of the terminal products of AA metabolism were measured using the corresponding kits for maleic dialdehyde (MDA), thromboxane B-2 (TXB2) and 6-keto-prostaglandin F-1 alpha (6-keto-PGF(1 alpha)) by colorimetry and radioimmunoassay, as appropriate. We found that STP could inhibit ADP-induced platelet aggregation, and the inhibitory ratio was 91.50% at the STP concentration of 4.0 mg/mL. Furthermore, STP markedly affected AA metabolism by decreasing the synthesis of MDA (P < 0.01) and increasing the synthesis of 6-keto-PGF(1 alpha), thus changing the plasma TXB2/6-keto-PGF(1 alpha) balance when the platelets were activated (P < 0.01). Therefore, STP altered AA metabolism and these findings
Resumo:
Two major pathways contribute to Ras-proximate-1-mediated integrin activation in stimulated platelets. Calcium and diacyglycerol-regulated guanine nucleotide exchange factor I (CalDAG-GEFI, RasGRP2) mediates the rapid but reversible activation of integrin αIIbβ3, while the adenosine diphosphate receptor P2Y12, the target for antiplatelet drugs like clopidogrel, facilitates delayed but sustained integrin activation. To establish CalDAG-GEFI as a target for antiplatelet therapy, we compared how each pathway contributes to thrombosis and hemostasis in mice. Ex vivo, thrombus formation at arterial or venous shear rates was markedly reduced in CalDAG-GEFI(-/-) blood, even in the presence of exogenous adenosine diphosphate and thromboxane A(2). In vivo, thrombosis was virtually abolished in arterioles and arteries of CalDAG-GEFI(-/-) mice, while small, hemostatically active thrombi formed in venules. Specific deletion of the C1-like domain of CalDAG-GEFI in circulating platelets also led to protection from thrombus formation at arterial flow conditions, while it only marginally increased blood loss in mice. In comparison, thrombi in the micro- and macrovasculature of clopidogrel-treated wild-type mice grew rapidly and frequently embolized but were hemostatically inactive. Together, these data suggest that inhibition of the catalytic or the C1 regulatory domain in CalDAG-GEFI will provide strong protection from athero-thrombotic complications while maintaining a better safety profile than P2Y12 inhibitors like clopidogrel.
Resumo:
The importance of the second messengers calcium (Ca(2+)) and diacylglycerol (DAG) in platelet signal transduction was established more than 30 years ago. Whereas protein kinase C (PKC) family members were discovered as the targets of DAG, little is known about the molecular identity of the main Ca(2+) sensor(s). We here identify Ca(2+) and DAG-regulated guanine nucleotide exchange factor I (CalDAG-GEFI) as a critical molecule in Ca(2+)-dependent platelet activation. CalDAG-GEFI, through activation of the small GTPase Rap1, directly triggers integrin activation and extracellular signal-regulated kinase-dependent thromboxane A(2) (TxA(2)) release. CalDAG-GEFI-dependent TxA(2) generation provides crucial feedback for PKC activation and granule release, particularly at threshold agonist concentrations. PKC/P2Y12 signaling in turn mediates a second wave of Rap1 activation, necessary for sustained platelet activation and thrombus stabilization. Our results lead to a revised model for platelet activation that establishes one molecule, CalDAG-GEFI, at the nexus of Ca(2+)-induced integrin activation, TxA(2) generation, and granule release. The preferential activation of CalDAG-GEFI over PKC downstream of phospholipase C activation, and the different kinetics of CalDAG-GEFI- and PKC/P2Y12-mediated Rap1 activation demonstrate an unexpected complexity to the platelet activation process, and they challenge the current model that DAG/PKC-dependent signaling events are crucial for the initiation of platelet adhesion.
Resumo:
Objective Hypertensive rats are more sensitive to the pressor effects of acute ouabain than normotensive rats. We analyzed the effect of chronic ouabain (similar to 8.0 mu g/day, 5 weeks) treatment on the blood pressure of spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats and the contribution of vascular mechanisms. Methods Responses to acetylcholine and phenylephrine were analyzed in isolated tail arteries. Protein expression of endothelial nitric oxide synthase and cyclooxygenase-2 (COX-2) were also investigated. Results Ouabain treatment enhanced blood pressure only in SHRs. The pD(2) for acetylcholine was decreased in arteries from SHRs compared with Wistar-Kyoto rats, and ouabain did not change this parameter. However, ouabain was able to increase the pD(2) to phenylephrine in SHRs. Nitric oxide synthase inhibition with N(G)-nitro-L-arginine methyl ester or potassium channel blockade by tetraetylamonium increased the response to phenylephrine in SHRs, with a smaller increase in response observed in ouabain-treated SHRs. In addition, indomethacin (a COX inhibitor) and ridogrel (a thromboxane A(2) synthase inhibitor and prostaglandin H(2)/thromboxane A(2) receptor antagonist) decreased contraction to phenylephrine in tail rings from ouabain-treated SHRs. Protein expression of endothelial nitric oxide synthase was unaltered following ouabain treatment in SHRs, whereas COX-2 expression was increased. Conclusion Chronic ouabain treatment further increases the raised blood pressure of SHRs. This appears to involve a vascular mechanism, related to a reduced vasodilator influence of nitric oxide and endothelium-derived hyperpolarizing factor and increased production of vasoconstrictor prostanoids by COX-2. These data suggest that the increased plasma levels of ouabain could play an important role in the maintenance of hypertension and the impairment of endothelial function. J Hypertens 27:1233-1242 (C) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
Investigation of the bioactive crude extract from the sponge Plakortis angulospiculatus from Brazil led to the isolation of plakortenone (1) as a new polyketide, along with five known polyketides (2-6) previously isolated from other Plakortis sponges. The known polyketides were tested in antileishmanial, antitrypanosomal, antineuroinflammatory, and cytotoxicity assays. The results show that plakortide P (3) is a potent antiparasitic compound, against both Leishmania chagasi and Trypanosona cruzi, and exhibited antineuroinflammatory activity. The known polyketides 2-6 were tested for cytotoxicity against four human cancer cell lines, but displayed only moderate cytotoxic activity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Endothelial dysfunction has been implicated in portal vein obstruction, a condition responsible for major complications in chronic portal hypertension. Increased vascular tone due to disruption of endothelial function has been associated with an imbalance in the equilibrium between endothelium-derived relaxing and contracting factors. Herein, we assessed underlying mechanisms by which expression of bradykinin B-1 receptor (B1R) is induced in the endothelium and how its stimulation triggers vasoconstriction in the rat portal vein. Prolonged in vitro incubation of portal vein resulted in time- and endothelium-dependent expression of B1R and cyclooxygenase-2 (COX-2). Inhibition of protein kinase C (PKC) or phosphatidylinositol 3-kinase (PI3K) significantly reduced expression of B1R through the regulation of transcription factors, activator protein-1 (AP-1) and cAMP response element-binding protein (CREB). Moreover, pharmacological studies showed that B1R-mediated portal vein contraction was reduced by COX-2, but not COX-1, inhibitors. Notably, activation of endothelial B1R increased phospholipase A(2)/COX-2-derived thromboxane A(2) (TXA(2)) levels, which in turn mediated portal vein contraction through binding to TXA(2) receptors expressed in vascular smooth muscle cells. These results provide novel molecular mechanisms involved in the regulation of B1R expression and identify a critical role for the endothelial B1R in the modulation of portal vein vascular tone. Our study suggests a potential role for B1R antagonists as therapeutic tools for diseases where portal hypertension may be involved. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The objective of the present work was to study the renal function of healthy and tumor-bearing rats chronically supplemented with fish oil (FO), a source of n-3 polyunsaturated fatty acids. Weanling male rats were divided in two groups, one control (C) and another orally supplemented for 70 days with FO (1 g/kg body weight). After this time, half the animals of each group were injected in the right flank with a suspension of Walker 256 tumor cells (W and WFO). The W group had less proteinemia reflecting cachectic proteolysis, FO reversed this fact. Tumor weight gain was also reduced in WFO. Glomerular filtration rate (GFR) was not different in FO or W compared to C, but was higher in WFO. Renal plasma flow (RPF) was higher in the FO supplemented groups. The W group had lower plasma osmolality than the C group, but FO supplementation resulted in normalization of this parameter. Fractional sodium excretion (FENa+) of FO rats was similar to C. Proximal Na+ reabsorption, evaluated by lithium clearance, was similar among the groups. Urinary thromboxane B-2 (TXB2) excretion was lower in the supplemented groups. The number of macrophages in renal tissue was higher in W compared to C rats, but was lower in WFO rats compared to W rats. In conclusion, FO supplementation resulted in less tumor growth and cachexia, and appeared to be renoprotective, as suggested by higher RPF and GFR.
Resumo:
Activation of TLRs (Toll-like receptors) induces gene expression of proteins involved in the immune system response. TLR4 has been implicated in the development and progression of CVDs (cardiovascular diseases). Innate and adaptive immunity contribute to hypertension-associated end-organ damage, although the mechanism by which this occurs remains unclear. In the present study, we hypothesize that inhibition of TLR4 decreases BP (blood pressure) and improves vascular contractility in resistance arteries from SHR (spontaneously hypertensive rats). TLR4 protein expression in mesenteric resistance arteries was higher in 15-week-old SHR than in age-matched Wistar controls or in 5-week-old SHR. To decrease the activation of TLR4, 15-week-old SHR and Wistar rats were treated with anti-TLR4 (anti-TLR4 antibody) or non-specific IgG control antibody for 15 days (1 mu g per day, intraperitoneal). Treatment with anti-TLR4 decreased MAP (mean arterial pressure) as well as TLR4 protein expression in mesenteric resistance arteries and IL-6 (interleukin 6) serum levels from SHR when compared with SHR treated with IgG. No changes in these parameters were found in treated Wistar control rats. Mesenteric resistance arteries from anti-TLR4-treated SHR exhibited decreased maximal contractile response to NA (noradrenaline) compared with IgG-treated SHR. Inhibition of COX (cyclo-oxygenase)-1 and COX-2, enzymes related to inflammatory pathways, decreased NA responses only in mesenteric resistance arteries of SHR treated with IgG. COX-2 expression and TXA(2) (thromboxane A(2)) release were decreased in SHR treated with anti-TLR4 compared with IgG-treated SHR. Our results suggest that TLR4 activation contributes to increased BP, low-grade inflammation and plays a role in the augmented vascular contractility displayed by SHR.
Resumo:
Background. Intestinal ischemia and reperfusion (I/R) is a documented cause of acute lung injury (ALI) and systemic inflammation. We previously reported that obstruction of thoracic lymphatic flow during intestinal I/R blunts pulmonary neutrophil recruitment and microvascular injury and decreases the systemic levels of tumor necrosis factor. Here, we consider the existence of a gut-lung axis promoting the induction of systemic inflammation, whereby drained intestinal lymph stimulates lung expression of adhesion molecules and matrix components and generation of inflammatory mediators. Material and Methods. Upon administration of anesthesia, male Wistar rats were subjected to occlusion of the superior mesenteric artery for 45 min, followed by 2 h of intestinal reperfusion (I/R); groups of rats were subjected to I/R with or without thoracic lymphatic duct ligation immediately before the procedure. The non-manipulated rats were used to investigate basal parameters. Results. Obstruction of thoracic lymphatic flow before intestinal I/R decreased the ability of cultured lung tissue explants to release IL-1 beta, IL-10, and VEGF. In contrast, lymphatic obstruction normalized the elevated lung expression of PECAM-1 caused by intestinal I/R. On the other hand, lung E-selectin expression was significantly reduced, whereas fibronectin expression and collagen synthesis were not affected. Lymph levels of LTB4 and TXB2 were found to be significantly increased. Conclusions. These data suggest that lymph factors drained from the intestine during ischemic trauma stimulate the lung to generate inflammatory mediators and alter the expression of adhesion molecules. Disturbances in lung homeostasis mediated by lymph might contribute to the spread of inflammatory processes, thereby accounting for the systemic inflammation induced by intestinal I/R. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Snake venoms are very complex mixtures of biologically active proteins and peptides that may affect hemostasis in many ways, by activating or inhibiting coagulant factors or platelets, or by disrupting endothelium. They have been classified into various families, including serine proteases, metalloproteinases, C-type lectins, disintegrins and phospholipases. The various members of a particular family act selectively on different blood coagulation factors, blood cells or tissues. Venom proteins affect platelet function in particular by binding to and blocking or clustering and activating receptors or by cleaving receptors or von Willebrand factor. They may also activate protease-activated receptors or modulate ADP release or thromboxane A(2) formation. L-amino acid oxidases activate platelets by producing H(2)O(2). Many of these purified components are valuable tools in platelet research, providing new information about receptor function and signaling.