909 resultados para TENSOR-PRODUCTS
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
We study complete continuity properties of operators onto ℓ2 and prove several results in the Dunford–Pettis theory of JB∗-triples and their projective tensor products, culminating in characterisations of the alternative Dunford–Pettis property for where E and F are JB∗-triples.
Resumo:
In a development from material introduced in recent work, we discuss the interconnections between ternary rings of operators (TROs) and right C*-algebras generated by JC*-triples, deducing that every JC*-triple possesses a largest universally reversible ideal, that the universal TRO commutes with appropriate tensor products and establishing a reversibility criterion for type I JW*-triples.
Resumo:
Groups preserving a distributive product are encountered often in algebra. Examples include automorphism groups of associative and nonassociative rings, classical groups, and automorphism groups of p-groups. While the great variety of such products precludes any realistic hope of describing the general structure of the groups that preserve them, it is reasonable to expect that insight may be gained from an examination of the universal distributive products: tensor products. We give a detailed description of the groups preserving tensor products over semisimple and semiprimary rings, and present effective algorithms to construct generators for these groups. We also discuss applications of our methods to algorithmic problems for which all currently known methods require an exponential amount of work. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We detail the automatic construction of R matrices corresponding to (the tensor products of) the (O-m\alpha(n)) families of highest-weight representations of the quantum superalgebras Uq[gl(m\n)]. These representations are irreducible, contain a free complex parameter a, and are 2(mn)-dimensional. Our R matrices are actually (sparse) rank 4 tensors, containing a total of 2(4mn) components, each of which is in general an algebraic expression in the two complex variables q and a. Although the constructions are straightforward, we describe them in full here, to fill a perceived gap in the literature. As the algorithms are generally impracticable for manual calculation, we have implemented the entire process in MATHEMATICA; illustrating our results with U-q [gl(3\1)]. (C) 2002 Published by Elsevier Science B.V.
Resumo:
The generator problem was posed by Kadison in 1967, and it remains open until today. We provide a solution for the class of C*-algebras absorbing the Jiang-Su algebra Z tensorially. More precisely, we show that every unital, separable, Z-stable C*-algebra A is singly generated, which means that there exists an element x є A that is not contained in any proper sub-C*- algebra of A. To give applications of our result, we observe that Z can be embedded into the reduced group C*-algebra of a discrete group that contains a non-cyclic, free subgroup. It follows that certain tensor products with reduced group C*-algebras are singly generated. In particular, C*r (F ∞) ⨂ C*r (F ∞) is singly generated.
Resumo:
Bei der Bestimmung der irreduziblen Charaktere einer Gruppe vom Lie-Typ entwickelte Lusztig eine Theorie, in der eine sogenannte Fourier-Transformation auftaucht. Dies ist eine Matrix, die nur von der Weylgruppe der Gruppe vom Lie-Typ abhängt. Anhand der Eigenschaften, die eine solche Fourier- Matrix erfüllen muß, haben Geck und Malle ein Axiomensystem aufgestellt. Dieses ermöglichte es Broue, Malle und Michel füur die Spetses, über die noch vieles unbekannt ist, Fourier-Matrizen zu bestimmen. Das Ziel dieser Arbeit ist eine Untersuchung und neue Interpretation dieser Fourier-Matrizen, die hoffentlich weitere Informationen zu den Spetses liefert. Die Werkzeuge, die dabei entstehen, sind sehr vielseitig verwendbar, denn diese Matrizen entsprechen gewissen Z-Algebren, die im Wesentlichen die Eigenschaften von Tafelalgebren besitzen. Diese spielen in der Darstellungstheorie eine wichtige Rolle, weil z.B. Darstellungsringe Tafelalgebren sind. In der Theorie der Kac-Moody-Algebren gibt es die sogenannte Kac-Peterson-Matrix, die auch die Eigenschaften unserer Fourier-Matrizen besitzt. Ein wichtiges Resultat dieser Arbeit ist, daß die Fourier-Matrizen, die G. Malle zu den imprimitiven komplexen Spiegelungsgruppen definiert, die Eigenschaft besitzen, daß die Strukturkonstanten der zugehörigen Algebren ganze Zahlen sind. Dazu müssen äußere Produkte von Gruppenringen von zyklischen Gruppen untersucht werden. Außerdem gibt es einen Zusammenhang zu den Kac-Peterson-Matrizen: Wir beweisen, daß wir durch Bildung äußerer Produkte von den Matrizen vom Typ A(1)1 zu denen vom Typ C(1) l gelangen. Lusztig erkannte, daß manche seiner Fourier-Matrizen zum Darstellungsring des Quantendoppels einer endlichen Gruppe gehören. Deswegen ist es naheliegend zu versuchen, die noch ungeklärten Matrizen als solche zu identifizieren. Coste, Gannon und Ruelle untersuchen diesen Darstellungsring. Sie stellen eine Reihe von wichtigen Fragen. Eine dieser Fragen beantworten wir, nämlich inwieweit rekonstruiert werden kann, zu welcher endlichen Gruppe gegebene Matrizen gehören. Den Darstellungsring des getwisteten Quantendoppels berechnen wir für viele Beispiele am Computer. Dazu müssen unter anderem Elemente aus der dritten Kohomologie-Gruppe H3(G,C×) explizit berechnet werden, was bisher anscheinend in noch keinem Computeralgebra-System implementiert wurde. Leider ergibt sich hierbei kein Zusammenhang zu den von Spetses herrührenden Matrizen. Die Werkzeuge, die in der Arbeit entwickelt werden, ermöglichen eine strukturelle Zerlegung der Z-Ringe mit Basis in bekannte Anteile. So können wir für die meisten Matrizen der Spetses Konstruktionen angeben: Die zugehörigen Z-Algebren sind Faktorringe von Tensorprodukten von affinen Ringe Charakterringen und von Darstellungsringen von Quantendoppeln.
Resumo:
In this work we construct the stationary measure of the N species totally asymmetric simple exclusion process in a matrix product formulation. We make the connection between the matrix product formulation and the queueing theory picture of Ferrari and Martin. In particular, in the standard representation, the matrices act on the space of queue lengths. For N > 2 the matrices in fact become tensor products of elements of quadratic algebras. This enables us to give a purely algebraic proof of the stationary measure which we present for N=3.
Resumo:
Topics include: Free groups and presentations; Automorphism groups; Semidirect products; Classification of groups of small order; Normal series: composition, derived, and solvable series; Algebraic field extensions, splitting fields, algebraic closures; Separable algebraic extensions, the Primitive Element Theorem; Inseparability, purely inseparable extensions; Finite fields; Cyclotomic field extensions; Galois theory; Norm and trace maps of an algebraic field extension; Solvability by radicals, Galois' theorem; Transcendence degree; Rings and modules: Examples and basic properties; Exact sequences, split short exact sequences; Free modules, projective modules; Localization of (commutative) rings and modules; The prime spectrum of a ring; Nakayama's lemma; Basic category theory; The Hom functors; Tensor products, adjointness; Left/right Noetherian and Artinian modules; Composition series, the Jordan-Holder Theorem; Semisimple rings; The Artin-Wedderburn Theorem; The Density Theorem; The Jacobson radical; Artinian rings; von Neumann regular rings; Wedderburn's theorem on finite division rings; Group representations, character theory; Integral ring extensions; Burnside's paqb Theorem; Injective modules.
Resumo:
Topics include: Rings, ideals, algebraic sets and affine varieties, modules, localizations, tensor products, intersection multiplicities, primary decomposition, the Nullstellensatz
Resumo:
Entanglement is defined for each vector subspace of the tensor product of two finite-dimensional Hilbert spaces, by applying the notion of operator entanglement to the projection operator onto that subspace. The operator Schmidt decomposition of the projection operator defines a string of Schmidt coefficients for each subspace, and this string is assumed to characterize its entanglement, so that a first subspace is more entangled than a second, if the Schmidt string of the second majorizes the Schmidt string of the first. The idea is applied to the antisymmetric and symmetric tensor products of a finite-dimensional Hilbert space with itself, and also to the tensor product of an angular momentum j with a spin 1/2. When adapted to the subspaces of states of the nonrelativistic hydrogen atom with definite total angular momentum (orbital plus spin), within the space of bound states with a given total energy, this leads to a complete ordering of those subspaces by their Schmidt strings.
Resumo:
This paper continues the study of spectral synthesis and the topologies tau-infinity and tau-r on the ideal space of a Banach algebra, concentrating particularly on the class of Haagerup tensor products of C*-algebras. For this class, it is shown that spectral synthesis is equivalent to the Hausdorffness of tau_infinity. Under a weak extra condition, spectral synthesis is shown to be equivalent to the Hausdorffness of tau_r.
Resumo:
Short-chain fatty acids (SCFAs) are fermentation end products produced by the intestinal microbiota and have anti-inflammatory and histone deacetylase-inhibiting properties. Recently, a dual relationship between the intestine and kidneys has been unraveled. Therefore, we evaluated the role of SCFA in an AKI model in which the inflammatory process has a detrimental role. We observed that therapy with the three main SCFAs (acetate, propionate, and butyrate) improved renal dysfunction caused by injury. This protection was associated with low levels of local and systemic inflammation, oxidative cellular stress, cell infiltration/activation, and apoptosis. However, it was also associated with an increase in autophagy. Moreover, SCFAs inhibited histone deacetylase activity and modulated the expression levels of enzymes involved in chromatin modification. In vitro analyses showed that SCFAs modulated the inflammatory process, decreasing the maturation of dendritic cells and inhibiting the capacity of these cells to induce CD4(+) and CD8(+) T cell proliferation. Furthermore, SCFAs ameliorated the effects of hypoxia in kidney epithelial cells by improving mitochondrial biogenesis. Notably, mice treated with acetate-producing bacteria also had better outcomes after AKI. Thus, we demonstrate that SCFAs improve organ function and viability after an injury through modulation of the inflammatory process, most likely via epigenetic modification.
Resumo:
This study was conducted to evaluate the inclusion of two levels (2.5 e 5.0%) of dried yeast (Saccharomyces cerevisiae) and its by-products, disrupted yeast cells and yeast cell wall in diets for juveniles of pacu (Piaractus mesopotamicus). Production performance, body and plasmatic composition indexes were evaluated. Seven isoproteic (26% digestible protein) and isoenergetic (3.100 kcal digestible energy) diets were formulated containing increased levels of each ingredient. The diets were supplied for 86 days, "ad libitum". Yeast and by-products increase feed efficiency and protein use, when compared to the control diet. Carcass composition and plasmatic (glucose, cortisol, uric acid, urea and plasmatic protein) levels are not affected by the test ingredient supplementation.
Resumo:
Electrochemical behavior of pesticides is extensively studied, but little attention has been given to the study of their degradation products (by-products) by electrochemical methods. However, the degradation products of pesticides can be even more toxic then the parent products and such studies should be encouraged. Therefore, the objective of this work was to evaluate the electroactivity of by-products of imazaquin, methylparathion, bentazon and atrazine, generated by UV irradiation and measured using cyclic and differential pulse voltammetry and UV-visible absorption spectrophotometry. Results have shown that several by-products exhibit electroactivity, allowing, in some cases, the simultaneous determination of both parent and degradation products.