989 resultados para TEMPERATURE HEAT-CAPACITIES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low-temperature heat capacities of cyclohexane were measured in the temperature range from 78 to 350 K by means of an automatic adiabatic calorimeter equipped with a new sample container adapted to measure heat capacities of liquids. The sample container was described in detail. The performance of this calorimetric apparatus was evaluated by heat capacity measurements on water. The deviations of experimental heat capacities from the corresponding smoothed values lie within +/-0.3%, while the inaccuracy is within +/-0.4%, compared with the reference data in the whole experimental temperature range. Two kinds of phase transitions were found at 186.065 and 279.684 K corresponding solid-solid and solid-liquid phase transitions, respectively. The entropy and enthalpy of the phase transition, as well as the thermodynamic functions {H-(T)- H-298.15 K} and {S-(T)-S-298.15 K}, were derived from the heat capacity data. The mass fraction purity of cyclohexane sample used in the present calorimetric study was determined to be 99.9965% by fraction melting approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molar heat capacities (C-p,C-m) of aspirin were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 78 to 383 K. No phase transition was observed in this temperature region. The polynomial function of Cp, vs. T was established in the light of the low-temperature heat capacity measurements and least square fitting method. The corresponding function is as follows: for 78 Kless than or equal toTless than or equal to383 K, C-p,C-m/J mol(-1) K-1=19.086X(4)+15.951X(3)-5.2548X(2)+90.192X+176.65, [X=(T-230.50/152.5)]. The thermodynamic functions on the base of the reference temperature of 298.15 K, {DeltaH(T)-DeltaH(298.15)} and {S-T-S-298.15}, were derived.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-temperature heat capacities of the 9-fluorenemethanol (C14H12O) have been precisely measured with a small sample automatic adiabatic calorimeter over the temperature range between T = 78 K and T = 390 K. The solid-liquid phase transition of the compound has been observed to be T-fus = (376.567 +/- 0.012) K from the heat-capacity measurements. The molar enthalpy and entropy of the melting of the substance were determined to be Delta(fus)H(m) = (26.273 +/- 0.013) kJ (.) mol(-1) and Delta(fus)S(m) = (69.770 +/- 0.035) J (.) K-1 (.) mol(-1). The experimental values of molar heat capacities in solid and liquid regions have been fitted to two polynomial equations by the least squares method. The constant-volume energy and standard molar enthalpy of combustion of the compound have been determined, Delta(c)U(C14H12O, s) = -(7125.56 +/- 4.62) kJ (.) mol(-1) and Delta(c)H(m)degrees(C14H12O, s) = -(7131.76 +/- 4.62) kJ (.) mol(-1), by means of a homemade precision oxygen-bomb combustion calorimeter at T = (298.15 +/- 0.001) K. The standard molar enthalpy of formation of the compound has been derived, Delta(f)H(m)degrees (C14H12O, s) = -(92.36 +/- 0.97) kJ (.) mol(-1), from the standard molar enthalpy of combustion of the compound in combination with other auxiliary thermodynamic quantities through a Hess thermochemical cycle. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low-temperature heat capacities of 2-chloro-5-trichloromethylpyridine were measured with a high-precision automated adiabatic calorimeter in the temperature range from 80 K to 345 K. A solid-liquid phase transition was observed from 318.57 K to 327.44 K with peak temperature 324.67 K; the molar enthalpy and entropy of phase transition, DeltaH(m) and DeltaS(m), were determined to be 14.50 +/-0.02 kJ mol(-1) and 44.66 +/- 0.07 kJ K-1 mol(-1), respectively. The thermal stability was investigated through thermogravimetric analysis (TG). The TG and DTG results reveal that 2-chloro-5-trichloromethylpyridine starts to lose mass at 332 K due to evaporation and completely changes into vapour at 483 K under the present experimental conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat capacities of nine ionic liquids were measured from (293 to 358) K by using a heat flux differential scanning calorimeter. The impact of impurities (water and chloride content) in the ionic liquid was analyzed to estimate the overall uncertainty. The Joback method for predicting ideal gas heat capacities has been extended to ionic liquids by the generation of contribution parameters for three new groups. The principle of corresponding states has been employed to enable the subsequent calculation of liquid heat capacities for ionic liquids, based on critical properties predicted using the modified Lydersen-Joback-Reid method, as a function of the temperature from (256 to 470) K. A relative absolute deviation of 2.9% was observed when testing the model against 961 data points from 53 different ionic liquids reported previously and measured within this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heat capacities of chrysanthemic acid in the temperature range from 80 to 400 K were measured with a precise automatic adiabatic calorimeter. The chrysanthemic acid sample was prepared with the purity of 0.9855 mole fraction. A solid-liquid fusion phase transition was observed in the experimental temperature range. The melting point, T-m, enthalpy and entropy of fusion, Delta(fus)H(m), Delta(fus)S(m), were determined to be 390.741 +/- 0.002 K, 14.51 +/- 0.13 kJ mol(-1), 37.13 +/- 0.34 J mol(-1) K-1, respectively. The thermodynamic functions of chrysanthemic acid, H-(T)-H-(298.15), S-(T)-S-(298.15) and G((T))-G((298.15)) were reported with a temperature interval of 5 K. The TG analysis under the heating rate of 10 K min(-1) confirmed that the thermal decomposition of the sample starts at ca. 410 K and terminates at ca. 471 K. The maximum decomposition rate was obtained at 466 K. The purity of the sample was determined by a fractional melting method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carboxin was synthesized and its heat capacities were measured with an automated adiabatic calorimeter over the temperature range from 79 to 380K. The melting point, molar enthalpy (Delta(fus)H(m)) and entropy (Delta(fus)S(m)) of fusion of this compound were determined to be 365.29 +/- 0.06K, 28.193 +/- 0.09 kJ mol(-1) and 77.180 +/- 0.02 J mol(-1) K-1, respectively. The purity of the compound was determined to be 99.55 mol% by using the fractional melting technique. The thermodynamic functions relative to the reference temperature (298.15 K) were calculated based on the heat capacity measurements in the temperature range between 80 and 360 K. The thermal stability of the compound was further investigated by differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis. The DSC curve indicates that the sample starts to decompose at ca. 290degreesC with the peak temperature at 292.7degreesC. The TG-DTG results demonstrate the maximum mass loss rate occurs at 293degreesC corresponding to the maximum decomposition rate. (C) 2003 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heat capacities of p-chlorobenzoic acid were measured in the temperature range from 80 to 580 K by means of an automatic adiabatic calorimeter equipped with a small sample cell of internal volume of 7.4cm(3). The construction and procedures of the calorimetric system were described in detail. The performance of this calorimetric apparatus was evaluated by heat capacity measurements on alpha-Al2O3. The deviations of experimental heat capacities from the corresponding smoothed values lie within +/-0.28 per cent, while the inaccuracy is within +/-0.40 per cent, compared with the recommended reference data in the whole experimental temperature range. A fusion transition at T = 512.280 K was found from the C-p-T curve of p-chlorobenzoic acid. The enthalpy and entropy of the phase transition, as well as the thermodynamic functions {G((T)) - G((298.15))}, {H-(T) - H-(298.15)} and {S-(T) - S-298.15}, were derived from the heat capacity data. The mass fraction purity of p-chlorobenzoic acid sample used in the present calorimetric study was determined to be 0.99935 by fraction melting approach. (C) 2002 Elsevier Science Ltd. All rights reserved.