988 resultados para TAYLOR SERIES EXPANSION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Initial convergence of the perturbation series expansion for vibrational nonlinear optical (NLO) properties was analyzed. The zero-point vibrational average (ZPVA) was obtained through first-order in mechanical plus electrical anharmonicity. Results indicated that higher-order terms in electrical and mechanical anharmonicity can make substantial contributions to the pure vibrational polarizibility of typical NLO molecules

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Initial convergence of the perturbation series expansion for vibrational nonlinear optical (NLO) properties was analyzed. The zero-point vibrational average (ZPVA) was obtained through first-order in mechanical plus electrical anharmonicity. Results indicated that higher-order terms in electrical and mechanical anharmonicity can make substantial contributions to the pure vibrational polarizibility of typical NLO molecules

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Fourier series can be used to describe periodic phenomena such as the one-dimensional crystal wave function. By the trigonometric treatements in Hückel theory it is shown that Hückel theory is a special case of Fourier series theory. Thus, the conjugated π system is in fact a periodic system. Therefore, it can be explained why such a simple theorem as Hückel theory can be so powerful in organic chemistry. Although it only considers the immediate neighboring interactions, it implicitly takes account of the periodicity in the complete picture where all the interactions are considered. Furthermore, the success of the trigonometric methods in Hückel theory is not accidental, as it based on the fact that Hückel theory is a specific example of the more general method of Fourier series expansion. It is also important for education purposes to expand a specific approach such as Hückel theory into a more general method such as Fourier series expansion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Higher order (2,4) FDTD schemes used for numerical solutions of Maxwell`s equations are focused on diminishing the truncation errors caused by the Taylor series expansion of the spatial derivatives. These schemes use a larger computational stencil, which generally makes use of the two constant coefficients, C-1 and C-2, for the four-point central-difference operators. In this paper we propose a novel way to diminish these truncation errors, in order to obtain more accurate numerical solutions of Maxwell`s equations. For such purpose, we present a method to individually optimize the pair of coefficients, C-1 and C-2, based on any desired grid size resolution and size of time step. Particularly, we are interested in using coarser grid discretizations to be able to simulate electrically large domains. The results of our optimization algorithm show a significant reduction in dispersion error and numerical anisotropy for all modeled grid size resolutions. Numerical simulations of free-space propagation verifies the very promising theoretical results. The model is also shown to perform well in more complex, realistic scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rigorous asymptotic theory for Wald residuals in generalized linear models is not yet available. The authors provide matrix formulae of order O(n(-1)), where n is the sample size, for the first two moments of these residuals. The formulae can be applied to many regression models widely used in practice. The authors suggest adjusted Wald residuals to these models with approximately zero mean and unit variance. The expressions were used to analyze a real dataset. Some simulation results indicate that the adjusted Wald residuals are better approximated by the standard normal distribution than the Wald residuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Una evolución del método de diferencias finitas ha sido el desarrollo del método de diferencias finitas generalizadas (MDFG) que se puede aplicar a mallas irregulares o nubes de puntos. En este método se emplea una expansión en serie de Taylor junto con una aproximación por mínimos cuadrados móviles (MCM). De ese modo, las fórmulas explícitas de diferencias para nubes irregulares de puntos se pueden obtener fácilmente usando el método de Cholesky. El MDFG-MCM es un método sin malla que emplea únicamente puntos. Una contribución de esta Tesis es la aplicación del MDFG-MCM al caso de la modelización de problemas anisótropos elípticos de conductividad eléctrica incluyendo el caso de tejidos reales cuando la dirección de las fibras no es fija, sino que varía a lo largo del tejido. En esta Tesis también se muestra la extensión del método de diferencias finitas generalizadas a la solución explícita de ecuaciones parabólicas anisótropas. El método explícito incluye la formulación de un límite de estabilidad para el caso de nubes irregulares de nodos que es fácilmente calculable. Además se presenta una nueva solución analítica para una ecuación parabólica anisótropa y el MDFG-MCM explícito se aplica al caso de problemas parabólicos anisótropos de conductividad eléctrica. La evidente dificultad de realizar mediciones directas en electrocardiología ha motivado un gran interés en la simulación numérica de modelos cardiacos. La contribución más importante de esta Tesis es la aplicación de un esquema explícito con el MDFG-MCM al caso de la modelización monodominio de problemas de conductividad eléctrica. En esta Tesis presentamos un algoritmo altamente eficiente, exacto y condicionalmente estable para resolver el modelo monodominio, que describe la actividad eléctrica del corazón. El modelo consiste en una ecuación en derivadas parciales parabólica anisótropa (EDP) que está acoplada con un sistema de ecuaciones diferenciales ordinarias (EDOs) que describen las reacciones electroquímicas en las células cardiacas. El sistema resultante es difícil de resolver numéricamente debido a su complejidad. Proponemos un método basado en una separación de operadores y un método sin malla para resolver la EDP junto a un método de Runge-Kutta para resolver el sistema de EDOs de la membrana y las corrientes iónicas. ABSTRACT An evolution of the method of finite differences has been the development of generalized finite difference (GFD) method that can be applied to irregular grids or clouds of points. In this method a Taylor series expansion is used together with a moving least squares (MLS) approximation. Then, the explicit difference formulae for irregular clouds of points can be easily obtained using a simple Cholesky method. The MLS-GFD is a mesh-free method using only points. A contribution of this Thesis is the application of the MLS-GFDM to the case of modelling elliptic anisotropic electrical conductivity problems including the case of real tissues when the fiber direction is not fixed, but varies throughout the tissue. In this Thesis the extension of the generalized finite difference method to the explicit solution of parabolic anisotropic equations is also given. The explicit method includes a stability limit formulated for the case of irregular clouds of nodes that can be easily calculated. Also a new analytical solution for homogeneous parabolic anisotropic equation has been presented and an explicit MLS- GFDM has been applied to the case of parabolic anisotropic electrical conductivity problems. The obvious difficulty of performing direct measurements in electrocardiology has motivated wide interest in the numerical simulation of cardiac models. The main contribution of this Thesis is the application of an explicit scheme based in the MLS-GFDM to the case of modelling monodomain electrical conductivity problems using operator splitting including the case of anisotropic real tissues. In this Thesis we present a highly efficient, accurate and conditionally stable algorithm to solve a monodomain model, which describes the electrical activity in the heart. The model consists of a parabolic anisotropic partial differential equation (PDE), which is coupled to systems of ordinary differential equations (ODEs) describing electrochemical reactions in the cardiac cells. The resulting system is challenging to solve numerically, because of its complexity. We propose a method based on operator splitting and a meshless method for solving the PDE together with a Runge-Kutta method for solving the system of ODE’s for the membrane and ionic currents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper gives a review of recent progress in the design of numerical methods for computing the trajectories (sample paths) of solutions to stochastic differential equations. We give a brief survey of the area focusing on a number of application areas where approximations to strong solutions are important, with a particular focus on computational biology applications, and give the necessary analytical tools for understanding some of the important concepts associated with stochastic processes. We present the stochastic Taylor series expansion as the fundamental mechanism for constructing effective numerical methods, give general results that relate local and global order of convergence and mention the Magnus expansion as a mechanism for designing methods that preserve the underlying structure of the problem. We also present various classes of explicit and implicit methods for strong solutions, based on the underlying structure of the problem. Finally, we discuss implementation issues relating to maintaining the Brownian path, efficient simulation of stochastic integrals and variable-step-size implementations based on various types of control.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper makes two points. First, we show that the line-of-sight solution to cosmic microwave anisotropies in Fourier space, even though formally defined for arbitrarily large wavelengths, leads to position-space solutions which only depend on the sources of anisotropies inside the past light cone of the observer. This foretold manifestation of causality in position (real) space happens order by order in a series expansion in powers of the visibility gamma = e(-mu), where mu is the optical depth to Thomson scattering. We show that the contributions of order gamma(N) to the cosmic microwave background (CMB) anisotropies are regulated by spacetime window functions which have support only inside the past light cone of the point of observation. Second, we show that the Fourier-Bessel expansion of the physical fields (including the temperature and polarization momenta) is an alternative to the usual Fourier basis as a framework to compute the anisotropies. The viability of the Fourier-Bessel series for treating the CMB is a consequence of the fact that the visibility function becomes exponentially small at redshifts z >> 10(3), effectively cutting off the past light cone and introducing a finite radius inside which initial conditions can affect physical observables measured at our position (x) over right arrow = 0 and time t(0). Hence, for each multipole l there is a discrete tower of momenta k(il) (not a continuum) which can affect physical observables, with the smallest momenta being k(1l) similar to l. The Fourier-Bessel modes take into account precisely the information from the sources of anisotropies that propagates from the initial value surface to the point of observation-no more, no less. We also show that the physical observables (the temperature and polarization maps), and hence the angular power spectra, are unaffected by that choice of basis. This implies that the Fourier-Bessel expansion is the optimal scheme with which one can compute CMB anisotropies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we discuss implicit Taylor methods for stiff Ito stochastic differential equations. Based on the relationship between Ito stochastic integrals and backward stochastic integrals, we introduce three implicit Taylor methods: the implicit Euler-Taylor method with strong order 0.5, the implicit Milstein-Taylor method with strong order 1.0 and the implicit Taylor method with strong order 1.5. The mean-square stability properties of the implicit Euler-Taylor and Milstein-Taylor methods are much better than those of the corresponding semi-implicit Euler and Milstein methods and these two implicit methods can be used to solve stochastic differential equations which are stiff in both the deterministic and the stochastic components. Numerical results are reported to show the convergence properties and the stability properties of these three implicit Taylor methods. The stability analysis and numerical results show that the implicit Euler-Taylor and Milstein-Taylor methods are very promising methods for stiff stochastic differential equations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Exercises and solutions in PDF

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Exercises and solutions in LaTex

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El coneixement de la superfície d'energia potencial (PES) ha estat essencial en el món de la química teòrica per tal de discutir tant la reactivitat química com l'estructura i l'espectroscòpia molecular. En el camp de la reactivitat química es hem proposat continuar amb el desenvolupament de nova metodologia dins el marc de la teoria del funcional de la densitat conceptual. En particular aquesta tesis es centrarà en els següents punts: a) El nombre i la naturalesa dels seus punts estacionaris del PES poden sofrir canvis radicals modificant el nivell de càlcul utilitzats, de tal manera que per estar segurs de la seva naturalesa cal anar a nivells de càlcul molt elevats. La duresa és una mesura de la resistència d'un sistema químic a canviar la seva configuració electrònica, i segons el principi de màxima duresa on hi hagi un mínim o un màxim d'energia trobarem un màxim o un mínim de duresa, respectivament. A l'escollir tot un conjunt de reaccions problemàtiques des del punt de vista de presència de punts estacionaris erronis, hem observat que els perfils de duresa són més independents de la base i del mètode utilitzats, a més a més sempre presenten el perfil correcte. b) Hem desenvolupat noves expressions basades en les integracions dels kernels de duresa per tal de determinar la duresa global d'una molècula de manera més precisa que la utilitzada habitualment que està basada en el càlcul numèric de la derivada segona de l'energia respecte al número d'electrons. c) Hem estudiat la validesa del principis de màxima duresa i de mínima polaritzabiliat en les vibracions asimètriques en sistemes aromàtics. Hem trobat que per aquests sistemes alguns modes vibracionals incompleixen aquests principis i hem analitzat la relació d'aquest l'incompliment amb l'efecte de l'acoblament pseudo-Jahn-Teller. A més a més, hem postulat tot un conjunt de regles molt senzilles que ens permetien deduir si una molècula compliria o no aquests principis sense la realització de cap càlcul previ. Tota aquesta informació ha estat essencial per poder determinar exactament quines són les causes del compliment o l'incompliment del MHP i MPP. d) Finalment, hem realitzat una expansió de l'energia funcional en termes del nombre d'electrons i de les coordenades normals dintre del conjunt canònic. En la comparació d'aquesta expansió amb l'expansió de l'energia del nombre d'electrons i del potencial extern hem pogut recuperar d'una altra forma diferent tot un conjunt de relacions ja conegudes entre alguns coneguts descriptors de reactivitat del funcional de la densitat i en poden establir tot un conjunt de noves relacions i de nous descriptors. Dins del marc de les propietats moleculars es proposa generalitzar i millorar la metodologia pel càlcul de la contribució vibracional (Pvib) a les propietats òptiques no lineals (NLO). Tot i que la Pvib no s'ha tingut en compte en la majoria dels estudis teòrics publicats de les propietats NLO, recentment s'ha comprovat que la Pvib de diversos polímers orgànics amb altes propietats òptiques no lineals és fins i tot més gran que la contribució electrònica. Per tant, tenir en compte la Pvib és essencial en el disseny dels nous materials òptics no lineals utilitzats en el camp de la informàtica, les telecomunicacions i la tecnologia làser. Les principals línies d'aquesta tesis sobre aquest tema són: a) Hem calculat per primera vegada els termes d'alt ordre de Pvib de diversos polímers orgànics amb l'objectiu d'avaluar la seva importància i la convergència de les sèries de Taylor que defineixen aquestes contribucions vibracionals. b) Hem avaluat les contribucions electròniques i vibracionals per una sèrie de molècules orgàniques representatives utilitzant diferents metodologies, per tal de poder de determinar quina és la manera més senzilla per poder calcular les propietats NLO amb una precisió semiquantitativa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We construct a set of functions, say, psi([r])(n) composed of a cosine function and a sigmoidal transformation gamma(r) of order r > 0. The present functions are orthonormal with respect to a proper weight function on the interval [-1, 1]. It is proven that if a function f is continuous and piecewise smooth on [-1, 1] then its series expansion based on psi([r])(n) converges uniformly to f so long as the order of the sigmoidal transformation employed is 0 < r

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis comprises some studies on the Weyl, Vaidya and Weyl distorted Schwarzschild (WDS) spacetimes. The main focal areas are : a) construction of near horizon metric(NHM) for WDS spacetime and subsequently a "stretched horizon" prescribed by the membrane formalism for black holes, b) application of membrane formalism and construction of stretched horizons for Vaidya spacetime and c) using the thin shell formalism to construct an asymptotically flat spacetime with a Weyl interior where the construction does not violate energy conditions. For a), a standard formalism developed in [1] has been used wherein the metric is expanded as a Taylor series in ingoing Gaussian null coordinates with the affine parameter as the expansion parameter. This expansion is used to construct a timelike "stretched horizon" just outside the true horizon to facilitate some membrane formalism studies, the theory for which was first introduced in [2]. b) applies the membrane formalism to Vaidya spacetime and also extends a part of the work done in [1] in which event horizon candidates were located perturbatively. Here, we locate stretched horizons in close proximity to every event horizon candidate located in [1]. c) is an attempt to induce Weyl distortions with a thin shell of matter in an asymptotically flat spacetime without violating energy conditions.