816 resultados para TASK ALLOCATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presented at Work in Progress Session, IEEE Real-Time Systems Symposium (RTSS 2015). 1 to 4, Dec, 2015. San Antonio, U.S.A..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dieser Dissertation werden Methoden zur optimalen Aufgabenverteilung in Multirobotersystemen (engl. Multi-Robot Task Allocation – MRTA) zur Inspektion von Industrieanlagen untersucht. MRTA umfasst die Verteilung und Ablaufplanung von Aufgaben für eine Gruppe von Robotern unter Berücksichtigung von operativen Randbedingungen mit dem Ziel, die Gesamteinsatzkosten zu minimieren. Dank zunehmendem technischen Fortschritt und sinkenden Technologiekosten ist das Interesse an mobilen Robotern für den Industrieeinsatz in den letzten Jahren stark gestiegen. Viele Arbeiten konzentrieren sich auf Probleme der Mobilität wie Selbstlokalisierung und Kartierung, aber nur wenige Arbeiten untersuchen die optimale Aufgabenverteilung. Da sich mit einer guten Aufgabenverteilung eine effizientere Planung erreichen lässt (z. B. niedrigere Kosten, kürzere Ausführungszeit), ist das Ziel dieser Arbeit die Entwicklung von Lösungsmethoden für das aus Inspektionsaufgaben mit Einzel- und Zweiroboteraufgaben folgende Such-/Optimierungsproblem. Ein neuartiger hybrider Genetischer Algorithmus wird vorgestellt, der einen teilbevölkerungbasierten Genetischen Algorithmus zur globalen Optimierung mit lokalen Suchheuristiken kombiniert. Zur Beschleunigung dieses Algorithmus werden auf die fittesten Individuen einer Generation lokale Suchoperatoren angewendet. Der vorgestellte Algorithmus verteilt die Aufgaben nicht nur einfach und legt den Ablauf fest, sondern er bildet auch temporäre Roboterverbünde für Zweiroboteraufgaben, wodurch räumliche und zeitliche Randbedingungen entstehen. Vier alternative Kodierungsstrategien werden für den vorgestellten Algorithmus entworfen: Teilaufgabenbasierte Kodierung: Hierdurch werden alle möglichen Lösungen abgedeckt, allerdings ist der Suchraum sehr groß. Aufgabenbasierte Kodierung: Zwei Möglichkeiten zur Zuweisung von Zweiroboteraufgaben wurden implementiert, um die Effizienz des Algorithmus zu steigern. Gruppierungsbasierte Kodierung: Zeitliche Randbedingungen zur Gruppierung von Aufgaben werden vorgestellt, um gute Lösungen innerhalb einer kleinen Anzahl von Generationen zu erhalten. Zwei Umsetzungsvarianten werden vorgestellt. Dekompositionsbasierte Kodierung: Drei geometrische Zerlegungen wurden entworfen, die Informationen über die räumliche Anordnung ausnutzen, um Probleme zu lösen, die Inspektionsgebiete mit rechteckigen Geometrien aufweisen. In Simulationsstudien wird die Leistungsfähigkeit der verschiedenen hybriden Genetischen Algorithmen untersucht. Dazu wurde die Inspektion von Tanklagern einer Erdölraffinerie mit einer Gruppe homogener Inspektionsroboter als Anwendungsfall gewählt. Die Simulationen zeigen, dass Kodierungsstrategien, die auf der geometrischen Zerlegung basieren, bei einer kleinen Anzahl an Generationen eine bessere Lösung finden können als die anderen untersuchten Strategien. Diese Arbeit beschäftigt sich mit Einzel- und Zweiroboteraufgaben, die entweder von einem einzelnen mobilen Roboter erledigt werden können oder die Zusammenarbeit von zwei Robotern erfordern. Eine Erweiterung des entwickelten Algorithmus zur Behandlung von Aufgaben, die mehr als zwei Roboter erfordern, ist möglich, würde aber die Komplexität der Optimierungsaufgabe deutlich vergrößern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La coordinació i assignació de tasques en entorns distribuïts ha estat un punt important de la recerca en els últims anys i aquests temes són el cor dels sistemes multi-agent. Els agents en aquests sistemes necessiten cooperar i considerar els altres agents en les seves accions i decisions. A més a més, els agents han de coordinar-se ells mateixos per complir tasques complexes que necessiten més d'un agent per ser complerta. Aquestes tasques poden ser tan complexes que els agents poden no saber la ubicació de les tasques o el temps que resta abans de que les tasques quedin obsoletes. Els agents poden necessitar utilitzar la comunicació amb l'objectiu de conèixer la tasca en l'entorn, en cas contrari, poden perdre molt de temps per trobar la tasca dins de l'escenari. De forma similar, el procés de presa de decisions distribuït pot ser encara més complexa si l'entorn és dinàmic, amb incertesa i en temps real. En aquesta dissertació, considerem entorns amb sistemes multi-agent amb restriccions i cooperatius (dinàmics, amb incertesa i en temps real). En aquest sentit es proposen dues aproximacions que permeten la coordinació dels agents. La primera és un mecanisme semi-centralitzat basat en tècniques de subhastes combinatòries i la idea principal es minimitzar el cost de les tasques assignades des de l'agent central cap als equips d'agents. Aquest algoritme té en compte les preferències dels agents sobre les tasques. Aquestes preferències estan incloses en el bid enviat per l'agent. La segona és un aproximació d'scheduling totalment descentralitzat. Això permet als agents assignar les seves tasques tenint en compte les preferències temporals sobre les tasques dels agents. En aquest cas, el rendiment del sistema no només depèn de la maximització o del criteri d'optimització, sinó que també depèn de la capacitat dels agents per adaptar les seves assignacions eficientment. Addicionalment, en un entorn dinàmic, els errors d'execució poden succeir a qualsevol pla degut a la incertesa i error de accions individuals. A més, una part indispensable d'un sistema de planificació és la capacitat de re-planificar. Aquesta dissertació també proveeix una aproximació amb re-planificació amb l'objectiu de permetre als agent re-coordinar els seus plans quan els problemes en l'entorn no permeti la execució del pla. Totes aquestes aproximacions s'han portat a terme per permetre als agents assignar i coordinar de forma eficient totes les tasques complexes en un entorn multi-agent cooperatiu, dinàmic i amb incertesa. Totes aquestes aproximacions han demostrat la seva eficiència en experiments duts a terme en l'entorn de simulació RoboCup Rescue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A prevalent claim is that we are in knowledge economy. When we talk about knowledge economy, we generally mean the concept of “Knowledge-based economy” indicating the use of knowledge and technologies to produce economic benefits. Hence knowledge is both tool and raw material (people’s skill) for producing some kind of product or service. In this kind of environment economic organization is undergoing several changes. For example authority relations are less important, legal and ownership-based definitions of the boundaries of the firm are becoming irrelevant and there are only few constraints on the set of coordination mechanisms. Hence what characterises a knowledge economy is the growing importance of human capital in productive processes (Foss, 2005) and the increasing knowledge intensity of jobs (Hodgson, 1999). Economic processes are also highly intertwined with social processes: they are likely to be informal and reciprocal rather than formal and negotiated. Another important point is also the problem of the division of labor: as economic activity becomes mainly intellectual and requires the integration of specific and idiosyncratic skills, the task of dividing the job and assigning it to the most appropriate individuals becomes arduous, a “supervisory problem” (Hogdson, 1999) emerges and traditional hierarchical control may result increasingly ineffective. Not only specificity of know how makes it awkward to monitor the execution of tasks, more importantly, top-down integration of skills may be difficult because ‘the nominal supervisors will not know the best way of doing the job – or even the precise purpose of the specialist job itself – and the worker will know better’ (Hogdson,1999). We, therefore, expect that the organization of the economic activity of specialists should be, at least partially, self-organized. The aim of this thesis is to bridge studies from computer science and in particular from Peer-to-Peer Networks (P2P) to organization theories. We think that the P2P paradigm well fits with organization problems related to all those situation in which a central authority is not possible. We believe that P2P Networks show a number of characteristics similar to firms working in a knowledge-based economy and hence that the methodology used for studying P2P Networks can be applied to organization studies. Three are the main characteristics we think P2P have in common with firms involved in knowledge economy: - Decentralization: in a pure P2P system every peer is an equal participant, there is no central authority governing the actions of the single peers; - Cost of ownership: P2P computing implies shared ownership reducing the cost of owing the systems and the content, and the cost of maintaining them; - Self-Organization: it refers to the process in a system leading to the emergence of global order within the system without the presence of another system dictating this order. These characteristics are present also in the kind of firm that we try to address and that’ why we have shifted the techniques we adopted for studies in computer science (Marcozzi et al., 2005; Hales et al., 2007 [39]) to management science.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose the distributed bees algorithm (DBA) for task allocation in a swarm of robots. In the proposed scenario, task allocation consists in assigning the robots to the found targets in a 2-D arena. The expected distribution is obtained from the targets' qualities that are represented as scalar values. Decision-making mechanism is distributed and robots autonomously choose their assignments taking into account targets' qualities and distances. We tested the scalability of the proposed DBA algorithm in terms of number of robots and number of targets. For that, the experiments were performed in the simulator for various sets of parameters, including number of robots, number of targets, and targets' utilities. Control parameters inherent to DBA were tuned to test how they affect the final robot distribution. The simulation results show that by increasing the robot swarm size, the distribution error decreased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study a robot swarm that has to perform task allocation in an environment that features periodic properties. In this environment, tasks appear in different areas following periodic temporal patterns. The swarm has to reallocate its workforce periodically, performing a temporal task allocation that must be synchronized with the environment to be effective. We tackle temporal task allocation using methods and concepts that we borrow from the signal processing literature. In particular, we propose a distributed temporal task allocation algorithm that synchronizes robots of the swarm with the environment and with each other. In this algorithm, robots use only local information and a simple visual communication protocol based on light blinking. Our results show that a robot swarm that uses the proposed temporal task allocation algorithm performs considerably more tasks than a swarm that uses a greedy algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nature inspired decentralised multi-agent algorithm is proposed to solve a problem of distributed task allocation in which cities produce and store batches of different mail types. Agents must collect and process the mail batches, without global knowledge of their environment or communication between agents. The problem is constrained so that agents are penalised for switching mail types. When an agent process a mail batch of different type to the previous one, it must undergo a change-over, with repeated change-overs rendering the agent inactive. The efficiency (average amount of mail retrieved), and the flexibility (ability of the agents to react to changes in the environment) are investigated both in static and dynamic environments and with respect to sudden changes. New rules for mail selection and specialisation are proposed and are shown to exhibit improved efficiency and flexibility compared to existing ones. We employ a evolutionary algorithm which allows the various rules to evolve and compete. Apart from obtaining optimised parameters for the various rules for any environment, we also observe extinction and speciation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-agent algorithms inspired by the division of labour in social insects and by markets, are applied to a constrained problem of distributed task allocation. The efficiency (average number of tasks performed), the flexibility (ability to react to changes in the environment), and the sensitivity to load (ability to cope with differing demands) are investigated in both static and dynamic environments. A hybrid algorithm combining both approaches, is shown to exhibit improved efficiency and robustness. We employ nature inspired particle swarm optimisation to obtain optimised parameters for all algorithms in a range of representative environments. Although results are obtained for large population sizes to avoid finite size effects, the influence of population size on the performance is also analysed. From a theoretical point of view, we analyse the causes of efficiency loss, derive theoretical upper bounds for the efficiency, and compare these with the experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When designing a practical swarm robotics system, self-organized task allocation is key to make best use of resources. Current research in this area focuses on task allocation which is either distributed (tasks must be performed at different locations) or sequential (tasks are complex and must be split into simpler sub-tasks and processed in order). In practice, however, swarms will need to deal with tasks which are both distributed and sequential. In this paper, a classic foraging problem is extended to incorporate both distributed and sequential tasks. The problem is analysed theoretically, absolute limits on performance are derived, and a set of conditions for a successful algorithm are established. It is shown empirically that an algorithm which meets these conditions, by causing emergent cooperation between robots can achieve consistently high performance under a wide range of settings without the need for communication. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Al giorno d'oggi il reinforcement learning ha dimostrato di essere davvero molto efficace nel machine learning in svariati campi, come ad esempio i giochi, il riconoscimento vocale e molti altri. Perciò, abbiamo deciso di applicare il reinforcement learning ai problemi di allocazione, in quanto sono un campo di ricerca non ancora studiato con questa tecnica e perchè questi problemi racchiudono nella loro formulazione un vasto insieme di sotto-problemi con simili caratteristiche, per cui una soluzione per uno di essi si estende ad ognuno di questi sotto-problemi. In questo progetto abbiamo realizzato un applicativo chiamato Service Broker, il quale, attraverso il reinforcement learning, apprende come distribuire l'esecuzione di tasks su dei lavoratori asincroni e distribuiti. L'analogia è quella di un cloud data center, il quale possiede delle risorse interne - possibilmente distribuite nella server farm -, riceve dei tasks dai suoi clienti e li esegue su queste risorse. L'obiettivo dell'applicativo, e quindi del data center, è quello di allocare questi tasks in maniera da minimizzare il costo di esecuzione. Inoltre, al fine di testare gli agenti del reinforcement learning sviluppati è stato creato un environment, un simulatore, che permettesse di concentrarsi nello sviluppo dei componenti necessari agli agenti, invece che doversi anche occupare di eventuali aspetti implementativi necessari in un vero data center, come ad esempio la comunicazione con i vari nodi e i tempi di latenza di quest'ultima. I risultati ottenuti hanno dunque confermato la teoria studiata, riuscendo a ottenere prestazioni migliori di alcuni dei metodi classici per il task allocation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we propose the Distributed using Optimal Priority Assignment (DOPA) heuristic that finds a feasible partitioning and priority assignment for distributed applications based on the linear transactional model. DOPA partitions the tasks and messages in the distributed system, and makes use of the Optimal Priority Assignment (OPA) algorithm known as Audsley’s algorithm, to find the priorities for that partition. The experimental results show how the use of the OPA algorithm increases in average the number of schedulable tasks and messages in a distributed system when compared to the use of Deadline Monotonic (DM) usually favoured in other works. Afterwards, we extend these results to the assignment of Parallel/Distributed applications and present a second heuristic named Parallel-DOPA (P-DOPA). In that case, we show how the partitioning process can be simplified by using the Distributed Stretch Transformation (DST), a parallel transaction transformation algorithm introduced in [1].

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Division of labour is one of the most prominent features of social insects. The efficient allocation of individuals to different tasks requires dynamic adjustment in response to environmental perturbations. Theoretical models suggest that the colony-level flexibility in responding to external changes and internal perturbation may depend on the within-colony genetic diversity, which is affected by the number of breeding individuals. However, these models have not considered the genetic architecture underlying the propensity of workers to perform the various tasks. Here, we investigated how both within-colony genetic variability (stemming from variation in the number of matings by queens) and the number of genes influencing the stimulus (threshold) for a given task at which workers begin to perform that task jointly influence task allocation efficiency. We used a numerical agent-based model to investigate the situation where workers had to perform either a regulatory task or a foraging task. One hundred generations of artificial selection in populations consisting of 500 colonies revealed that an increased number of matings always improved colony performance, whatever the number of loci encoding the thresholds of the regulatory and foraging tasks. However, the beneficial effect of additional matings was particularly important when the genetic architecture of queens comprised one or a few genes for the foraging task's threshold. By contrast, a higher number of genes encoding the foraging task reduced colony performance with the detrimental effect being stronger when queens had mated with several males. Finally, the number of genes encoding the threshold for the regulatory task only had a minor effect on colony performance. Overall, our numerical experiments support the importance of mating frequency on efficiency of division of labour and also reveal complex interactions between the number of matings and genetic architecture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Information processing accounts propose that autonomic orienting reflects the amount of resources allocated to process a stimulus. However, secondary task reaction time (RT), a supposed measure of processing resources, has shown a dissociation from autonomic orienting. The present study tested the hypothesis that secondary task RT reflects a serial processing mechanism. Participants (N = 24) were presented with circle and ellipse shapes and asked to count the number of longer-than-usual presentations of one shape (task-relevant) and to ignore presentations of a second shape (task-irrelevant). Concurrent with the counting task, participants performed a secondary RT task to an auditory probe presented at either a high or low intensity and at two different probe positions following shape onset (50 and 300 ms). Electrodermal orienting was larger during task-relevant shapes than during task-irrelevant shapes, but secondary task RT to the high-intensity probe was slower during the latter. In addition, an underadditive interaction between probe stimulus intensity and probe position was found in secondary RT. The findings are consistent with a serial processing model of secondary RT and suggest that the notion of processing stages should be incorporated into current information-processing models of autonomic orienting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the continuum growth of Internet connected devices, the scalability of the protocols used for communication between them is facing a new set of challenges. In robotics these communications protocols are an essential element, and must be able to accomplish with the desired communication. In a context of a multi-­‐‑agent platform, the main types of Internet communication protocols used in robotics, mission planning and task allocation problems will be revised. It will be defined how to represent a message and how to cope with their transport between devices in a distributed environment, reviewing all the layers of the messaging process. A review of the ROS platform is also presented with the intent of integrating the already existing communication protocols with the ServRobot, a mobile autonomous robot, and the DVA, a distributed autonomous surveillance system. This is done with the objective of assigning missions to ServRobot in a security context.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summary : Division of labour is one of the most fascinating aspects of social insects. The efficient allocation of individuals to a multitude of different tasks requires a dynamic adjustment in response to the demands of a changing environment. A considerable number of theoretical models have focussed on identifying the mechanisms allowing colonies to perform efficient task allocation. The large majority of these models are built on the observation that individuals in a colony vary in their propensity (response threshold) to perform different tasks. Since individuals with a low threshold for a given task stimulus are more likely to perform that task than individuals with a high threshold, infra-colony variation in individual thresholds results in colony division of labour. These theoretical models suggest that variation in individual thresholds is affected by the within-colony genetic diversity. However, the models have not considered the genetic architecture underlying the individual response thresholds. This is important because a better understanding of division of labour requires determining how genotypic variation relates to differences in infra-colony response threshold distributions. In this thesis, we investigated the combined influence on task allocation efficiency of both, the within-colony genetic variability (stemming from variation in the number of matings by queens) and the number of genes underlying the response thresholds. We used an agent-based simulator to model a situation where workers in a colony had to perform either a regulatory task (where the amount of a given food item in the colony had to be maintained within predefined bounds) or a foraging task (where the quantity of a second type of food item collected had to be the highest possible). The performance of colonies was a function of workers being able to perform both tasks efficiently. To study the effect of within-colony genetic diversity, we compared the performance of colonies with queens mated with varying number of males. On the other hand, the influence of genetic architecture was investigated by varying the number of loci underlying the response threshold of the foraging and regulatory tasks. Artificial evolution was used to evolve the allelic values underlying the tasks thresholds. The results revealed that multiple matings always translated into higher colony performance, whatever the number of loci encoding the thresholds of the regulatory and foraging tasks. However, the beneficial effect of additional matings was particularly important when the genetic architecture of queens comprised one or few genes for the foraging task's threshold. By contrast, higher number of genes encoding the foraging task reduced colony performance with the detrimental effect being stronger when queens had mated with several males. Finally, the number of genes determining the threshold for the regulatory task only had a minor but incremental effect on colony performance. Overall, our numerical experiments indicate the importance of considering the effects of queen mating frequency, genetic architecture underlying task thresholds and the type of task performed when investigating the factors regulating the efficiency of division of labour in social insects. In this thesis we also investigate the task allocation efficiency of response threshold models and compare them with neural networks. While response threshold models are widely used amongst theoretical biologists interested in division of labour in social insects, our simulation reveals that they perform poorly compared to a neural network model. A major shortcoming of response thresholds is that they fail at one of the most crucial requirement of division of labour, the ability of individuals in a colony to efficiently switch between tasks under varying environmental conditions. Moreover, the intrinsic properties of the threshold models are that they lead to a large proportion of idle workers. Our results highlight these limitations of the response threshold models and provide an adequate substitute. Altogether, the experiments presented in this thesis provide novel contributions to the understanding of how division of labour in social insects is influenced by queen mating frequency and genetic architecture underlying worker task thresholds. Moreover, the thesis also provides a novel model of the mechanisms underlying worker task allocation that maybe more generally applicable than the widely used response threshold models. Resumé : La répartition du travail est l'un des aspects les plus fascinants des insectes vivant en société. Une allocation efficace de la multitude de différentes tâches entre individus demande un ajustement dynamique afin de répondre aux exigences d'un environnement en constant changement. Un nombre considérable de modèles théoriques se sont attachés à identifier les mécanismes permettant aux colonies d'effectuer une allocation efficace des tâches. La grande majorité des ces modèles sont basés sur le constat que les individus d'une même colonie diffèrent dans leur propension (inclination à répondre) à effectuer différentes tâches. Etant donné que les individus possédant un faible seuil de réponse à un stimulus associé à une tâche donnée sont plus disposés à effectuer cette dernière que les individus possédant un seuil élevé, les différences de seuils parmi les individus vivant au sein d'une même colonie mènent à une certaine répartition du travail. Ces modèles théoriques suggèrent que la variation des seuils des individus est affectée par la diversité génétique propre à la colonie. Cependant, ces modèles ne considèrent pas la structure génétique qui est à la base des seuils de réponse individuels. Ceci est très important car une meilleure compréhension de la répartition du travail requière de déterminer de quelle manière les variations génotypiques sont associées aux différentes distributions de seuils de réponse à l'intérieur d'une même colonie. Dans le cadre de cette thèse, nous étudions l'influence combinée de la variabilité génétique d'une colonie (qui prend son origine dans la variation du nombre d'accouplements des reines) avec le nombre de gènes supportant les seuils de réponse, vis-à-vis de la performance de l'allocation des tâches. Nous avons utilisé un simulateur basé sur des agents pour modéliser une situation où les travailleurs d'une colonie devaient accomplir une tâche de régulation (1a quantité d'une nourriture donnée doit être maintenue à l'intérieur d'un certain intervalle) ou une tâche de recherche de nourriture (la quantité d'une certaine nourriture doit être accumulée autant que possible). Dans ce contexte, 'efficacité des colonies tient en partie des travailleurs qui sont capable d'effectuer les deux tâches de manière efficace. Pour étudier l'effet de la diversité génétique d'une colonie, nous comparons l'efficacité des colonies possédant des reines qui s'accouplent avec un nombre variant de mâles. D'autre part, l'influence de la structure génétique a été étudiée en variant le nombre de loci à la base du seuil de réponse des deux tâches de régulation et de recherche de nourriture. Une évolution artificielle a été réalisée pour évoluer les valeurs alléliques qui sont à l'origine de ces seuils de réponse. Les résultats ont révélé que de nombreux accouplements se traduisaient toujours en une plus grande performance de la colonie, quelque soit le nombre de loci encodant les seuils des tâches de régulation et de recherche de nourriture. Cependant, les effets bénéfiques d'accouplements additionnels ont été particulièrement important lorsque la structure génétique des reines comprenait un ou quelques gènes pour le seuil de réponse pour la tâche de recherche de nourriture. D'autre part, un nombre plus élevé de gènes encodant la tâche de recherche de nourriture a diminué la performance de la colonie avec un effet nuisible d'autant plus fort lorsque les reines s'accouplent avec plusieurs mâles. Finalement, le nombre de gènes déterminant le seuil pour la tâche de régulation eu seulement un effet mineur mais incrémental sur la performance de la colonie. Pour conclure, nos expériences numériques révèlent l'importance de considérer les effets associés à la fréquence d'accouplement des reines, à la structure génétique qui est à l'origine des seuils de réponse pour les tâches ainsi qu'au type de tâche effectué au moment d'étudier les facteurs qui régulent l'efficacité de la répartition du travail chez les insectes vivant en communauté. Dans cette thèse, nous étudions l'efficacité de l'allocation des tâches des modèles prenant en compte des seuils de réponses, et les comparons à des réseaux de neurones. Alors que les modèles basés sur des seuils de réponse sont couramment utilisés parmi les biologistes intéressés par la répartition des tâches chez les insectes vivant en société, notre simulation montre qu'ils se révèlent peu efficace comparé à un modèle faisant usage de réseaux de neurones. Un point faible majeur des seuils de réponse est qu'ils échouent sur un point crucial nécessaire à la répartition des tâches, la capacité des individus d'une colonie à commuter efficacement entre des tâches soumises à des conditions environnementales changeantes. De plus, les propriétés intrinsèques des modèles basés sur l'utilisation de seuils conduisent à de larges populations de travailleurs inactifs. Nos résultats mettent en évidence les limites de ces modèles basés sur l'utilisation de seuils et fournissent un substitut adéquat. Ensemble, les expériences présentées dans cette thèse fournissent de nouvelles contributions pour comprendre comment la répartition du travail chez les insectes vivant en société est influencée par la fréquence d'accouplements des reines ainsi que par la structure génétique qui est à l'origine, pour un travailleur, du seuil de réponse pour une tâche. De plus, cette thèse fournit également un nouveau modèle décrivant les mécanismes qui sont à l'origine de l'allocation des tâches entre travailleurs, mécanismes qui peuvent être appliqué de manière plus générale que ceux couramment utilisés et basés sur des seuils de réponse.