78 resultados para TAPHONOMY
Resumo:
An extensive micro-tephrostratigraphic survey of three small lakes in the Scottish Inner Hebrides was conducted encompassing the Last Glacial–Interglacial Transition (LGIT). The lakes are highly contrasting in terms of lake area to catchment ratio, the presence or absence of stream inlets draining the catchment, and in the complexity of the catchment drainage network. A suite of distal Icelandic volcanic ashes was consistently detected in all three lakes, with three, namely Penifiler Tephra, Vedde Ash and Ashik Tephra, being common to all the lakes. These ashes were chosen to examine the taphonomic intercomparability of ash location and concentration among the lakes. Findings reveal that the part played by catchment inlets in determining ash concentration and within-basin location applies to microtephra layers as much as it does in studies of macrotephra layer thickness. The position of ash concentration maxima is also shown to vary significantly for different LGIT periods and may be a consequence of lake-level changes, especially during the early Holocene. High-resolution stratigraphic analysis through the Vedde Ash visible macrotephra at Loch Ashik reveals a high degree of complexity in taphonomic behaviour between the different geochemical components, with possible implications for the correct interpretation of the isochron position. The detection of multiple intact ash isochrons and the taphonomic processes responsible for their deposition should prove useful in future tephrostratigraphic surveys, as well as having applications within other palaeolimnological disciplines.
Resumo:
The Verulam Formation (Middle Ordovician) at the Lakefield Quarry and Gamebridge Quarry, southern Ontario, is comprised of five main lithofacies. These include shoal deposits consisting of Lithofacies 1, winnowed crinoidal grainstones and, shelf deposits consisting of: Lithofacies 2, wackestones, packstones, grainstones, and rudstones; Lithofacies 3, laminated calcisiltites; Lithofacies 4, nodular wackestones and mudstones; and, Lithofacies 5, laminated mudstones and shales. The distribution of the lithofacies was influenced by variations in storm frequency and intensity during a relative sea level fall. Predominant convex-up attitudes of concavo-convex shells within shell beds suggest syndepositional reworking during storm events. The bimodal orientations of shell axes on the upper surfaces of the shell beds indicates deposition under wave-generated currents. The sedimentary features and shell orientations indicate that the shell beds were deposited during storm events and not by the gradual accumulation of shelly material. Cluster and principal component analysis of relative abundance data of the taxa in the shell beds, interbedded nodular wackestones and mudstones, and laminated mudstones and shales, indicates one biofacies comprised of three main assemblages: a strophomenid (Sowerbyelladominated) assemblage, a transitional mixed strophomenid-atrypid assemblage and an atrypid (Zygospira-dominatQd) assemblage. The occurrence of the strophomenid, the strophomenid-atrypid and atrypid assemblages were controlled by storm-driven allogenic taphonomic feedback.
Resumo:
A number of recent articles emphasize the fundamental importance of taphonomy and formation processes to interpretation of plant remains assemblages, as well as the value of interdisciplinary approaches to studies of environmental change and ecological and social practices. This paper examines ways in which micromorphology can contribute to integrating geoarchaeology and archaeobotany in analysis of the taphonomy and context of plant remains and ecological and social practices. Micromorphology enables simultaneous in situ study of diverse plant materials and thereby traces of a range of depositional pathways and histories. In addition to charred plant remains, also often preserved in semi-arid environments are plant impressions, phytoliths and calcitic ashes. These diverse plant remains are often routinely separated and extracted from their depositional context or lost using other analytical techniques, thereby losing crucial evidence on taphonomy, formation processes and contextual associations, which are fundamental to all subsequent interpretations. Although micromorphological samples are small in comparison to bulk flotation samples of charred plant remains, their size is similar to phytolith and pollen samples. In this paper, key taphonomic issues are examined in the study of: fuel; animal dung, animal management and penning; building materials; and specific activities, including food storage and preparation and ritual, using selected case-studies from early urban settlements in the Ancient Near East. Microarchaeological residues and experimental archaeology are also briefly examined.
Resumo:
Taphonomic studies regularly employ animal analogues for human decomposition due to ethical restrictions relating to the use of human tissue. However, the validity of using animal analogues in soil decomposition studies is still questioned. This study compared the decomposition of skeletal muscle tissues (SMTs) from human (Homo sapiens), pork (Sus scrofa), beef (Bos taurus), and lamb (Ovis aries) interred in soil microcosms. Fixed interval samples were collected from the SMT for microbial activity and mass tissue loss determination; samples were also taken from the underlying soil for pH, electrical conductivity, and nutrient (potassium, phosphate, ammonium, and nitrate) analysis. The overall patterns of nutrient fluxes and chemical changes in nonhuman SMT and the underlying soil followed that of human SMT. Ovine tissue was the most similar to human tissue in many of the measured parameters. Although no single analogue was a precise predictor of human decomposition in soil, all models offered close approximations in decomposition dynamics.
Resumo:
Two closely related chemoecological groups of fungi, the ammonia fungi and the postputrefaction fungi, have been associated with the decomposition by-products of cadavers. Sporocarps have been observed in disparate woodlands across the world and often mark sites of graves. These groups of fungi provide visible markers of the sites of cadaver decomposition and follow repeated patterns of successional change as apparent decomposition proceeds. We suggest these phenomena may become a useful tool for crime scene investigation, forensic archaeology and forensic taphonomy.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)