948 resultados para Synthetic antioxidants


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the biological system's ability to detoxify these reactive intermediates. Mammalian cells have elaborate antioxidant defense mechanisms to control the damaging effects of ROS. Glutathione peroxidase (GPx), a selenoenzyme, plays a key role in protecting the organism from oxidative damage by catalyzing the reduction of harmful hydroperoxides with thiol a ``catalytic triad'' with tryptophan and glutamine, which cofactors. The selenocysteine residue at the active site forms activates the selenium moiety for an efficient reduction of peroxides. After the discovery that ebselen, a synthetic organoselenium compound, mimics the catalytic activity of GPx both in vitro and in vivo, several research groups developed a number of small-molecule selenium compounds as functional mimics of GPx, either by modifying the basic structure of ebselen or by incorporating some structural features of the native enzyme. The synthetic mimics reported in the literature can be classified in three major categories: (i) cyclic selenenyl amides having a Se-N bond, (ii) diaryl diselenides, and (iii) aromatic or aliphatic monoselenides. Recent studies show that ebselen exhibits very poor GPx activity when aryl or benzylic thiols such as PhSH or BnSH are used as cosubstrates. Because the catalytic activity of each GPx mimic largely depends on the thiol cosubstrates used, the difference in the thiols causes the discrepancies observed in different studies. In this Account, we demonstrate the effect of amide and amine substituents on the GPx activity of various organoselenium compounds. The existence of strong Se ... O/N interactions in the selenenyl sulfide intermediates significantly reduces the GPx activity. These interactions facilitate an attack of thiol at selenium rather than at sulfur, leading to thiol exchange reactions that hamper the formation of catalytically active selenol. Therefore, any substituent capable of enhancing the nucleophilic attack of thiol at sulfur in the selenenyl sulfide state would enhance the antioxidant potency of organoselenium compounds. Interestingly, replacement of the sec-amide substituent by a tert-amide group leads to a weakening of Se ... 0 interactions in the selenenyl sulfide intermediates. This modification results in 10- to 20-fold enhancements in the catalytic activities. Another strategy involving the replacement of tert-amide moieties by tert-amino substituents further increases the activity by 3- to 4-fold. The most effective modification so far in benzylamine-based GPx mimics appears to be either the replacement of a tert-amino substituent by a sec-amino group or the introduction of an additional 6-methoxy group in the phenyl ring. These strategies can contribute to a remarkable enhancement in the GPx activity. In addition to enhancing catalytic activity, a change in the substituents near the selenium moiety alters the catalytic mechanisms. The mechanistic investigations of functional mimics are useful not only for understanding the complex chemistry at the active site of GPx but also for designing and synthesizing novel antioxidants and anti-inflammatory agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free radicals play an important role in many physiological processes that occur in the human body such as cellular defense responses to infectious agents and a variety of cellular signaling pathways. While at low concentrations free radicals are involved in many significant metabolic reactions, high levels of free radicals can have deleterious effects on biomolecules like proteins, lipids, and DNA. Many physiological disorders such as diabetes, ageing, neurodegenerative diseases, and ischemia-reperfusion (I/R) injury are associated with oxidative stress.1 In particular, the deleterious effects caused by I/R injury developed during organ transplantation, cardiac infarct, and stroke have become the main cause of death in the United States and Europe.1,2 In this context, we synthesized and characterized a series of novel indole-amino acid conjugates as potential antioxidants for I/R injury. The synthesis of indole-phenol conjugate compounds is also discussed. Phenolic derivatives such as caffeic acid, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), resveratrol, and its analogues are known for their significant antioxidative properties. A series of resveratrol analogues have been designed and synthesized as potential antioxidants. The radical scavenging mechanisms for potential antioxidants and assays for the in vitro evaluation of antioxidant activities are also discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present study, we have made an effort to develop the novel synthetic antioxidants and antimicrobials with improved potency. The novel benzofuran-gathered C-2,4,6-substituted pyrimidine derivatives 5a, 5b, 5c, 5d, 5e, 5f, 6a, 6b, 6c, 6d, 6e, 6f, 7a, 7b, 7c, 7d, 7e, 7f, 8a, 8b, 8c, 8d, 8e, 8f, 9a, 9b, 9c, 9d, 9e, 9f were synthesized by simple and efficient four-step reaction pathway. Initially, o-alkyl derivative of salicylaldehyde readily furnish corresponding 2-acetyl benzofuran 2 in good yield, upon the treatment with potassium tertiary butoxide in the presence of molecular sieves. Further, Claisen-Schmidt condensation with aromatic aldehydes via treatment with thiourea followed by coupling reaction with different sulfonyl chlorides afforded target compounds. The structures of newly synthesized compounds were confirmed by IR, H-1 NMR, C-13 NMR, mass, and elemental analysis and further screened for their antioxidant and antimicrobial activities. The results showed that the synthesized compounds 8b, 8e, 9b, and 9e produced significant antioxidant activity with 50% inhibitory concentration higher than that of reference, whereas compounds 7d and 7c produced dominant antimicrobial activity at concentrations 1.0 and 0.5mg/mL compared with standard Gentamicin and Nystatin, respectively.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Antioxidants are substances that when present at low concentrations compared to that of an oxidisable substrate significantly delays or inhibits oxidation of that substrate in food products or in living systems. Antioxidants are either endogenous to the body or derived from the diet. Several types of synthetic antioxidants like BHT, BHA, TBHQ etc. are also used in the food industry. However, findings and subsequent publicity has fostered significant consumer resistance to the use of synthetic food additives as antioxidants, colourants etc. and therefore food industry is in search of potential natural antioxidants from edible sources.The major dietary sources of antioxidant phytochemicals are cereals, legumes, fruits, vegetables, oilseeds, beverages, spices and herbs. In the present study, we have focused on rice bran and its byproducts. Rice is one of the oldest of food crops and has been a staple food in India from very ancient times. It is also the staple food for about 60% of the world's population. Rice bran is a byproduct of the rice milling industry and is a potential commercial source of a healthy edible oil viz. rice bran oil and a variety of bio-active phytochemicals.Defatted rice bran (DRB), a byproduct of rice bran oil extraction, is also a good source of insoluble dietary fiber, protein, phytic acid, inosito I, vitamin B and a variety of other phytochemicals. Though the antioxidant potential of DRB has been demonstrated, it still remained a relatively unexplored source material, which demanded further investigation especially with regard to its detailed phytochemical profile leading to practical application. The focus of the present investigation therefore has been on DRB primarily to establish its phytochemical status and feasibility of using it as a source of bio-active phytochemicals and natural antioxidants leading to value addition of DRB otherwise used as cattle feed. To gain a better understanding of the value of rice bran as a source of phytochemicals, five popular rice varieties of the region viz. PTB 50, PTB 39, PTB 38, JA Y A, and MO 10 and a wild variety (oryza nivara) that is mainly used for medicinal applications in traditional ayurvedic system were characterized along with commercial samples of rice bran. The present study also explains the feasibility of a process for the extraction, enrichment, and isolation of antioxidant compounds from DRB. The antioxidant potential of the extracts were evaluated both in bulk oils and in food relevant model emulsions, using standard in vitro models. Radical scavenging effects, indicative of possible biological effects, were also evaluated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative properties when added to soybean oil.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The potential replacement, partially or fully, of synthetic additives by bio-based alternatives derived from indigenous renewable non-food crop resources offers a market opportunity for a green supply of raw materials for different industrial and health products, with greater involvement of the farming community in crop production while addressing the ever more stringent environmental and pollution laws that now require the use of less potentially toxic/harmful ingredients, even if they are present in relatively small quantities. The work presented here relates to developing a new genre of environmentally-sustainable bio-based antioxidants (AO) for industrial uses that are obtained from extracts of UK-grown rosemary (Rosmarinus officinalis) plant. The performance of these AOs was tested, and their efficacy compared with some common and benchmark synthetic AOs from the same chemical class, in different products including polymers especially for packaging, as well as lubricants, cosmetics and health products. One of the main active ingredients in rosemary is Rosmarinic acid which is a water-soluble compound. This was chemically transformed into a number of ester derivatives, Rosmarinates, targeted for different applications. The parent and the modified antioxidants (the rosmarinates) were characterised and their antioxidancy were examined and tested in linear low-density polyethylene (LLDPE) and in polypropylene (PP) and compared with compounds of similar structure and with other well known synthetic antioxidants used commercially in polyolefins. The results show that antioxidants sourced from rosemary have the added benefit of being highly efficient and intrinsically more active than many synthetic and bio-based alternatives.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxidative stress has become widely viewed as an underlying condition in a number of diseases, such as ischemia-reperfusion disorders, central nervous system disorders, cardiovascular conditions, cancer, and diabetes. Thus, natural and synthetic antioxidants have been actively sought. Superoxide dismutase is a first line of defense against oxidative stress under physiological and pathological conditions. Therefore, the development of therapeutics aimed at mimicking superoxide dismutase was a natural maneuver. Metalloporphyrins, as well as Mn cyclic polyamines, Mn salen derivatives and nitroxides were all originally developed as SOD mimics. The same thermodynamic and electrostatic properties that make them potent SOD mimics may allow them to reduce other reactive species such as peroxynitrite, peroxynitrite-derived CO(3)(*-), peroxyl radical, and less efficiently H(2)O(2). By doing so SOD mimics can decrease both primary and secondary oxidative events, the latter arising from the inhibition of cellular transcriptional activity. To better judge the therapeutic potential and the advantage of one over the other type of compound, comparative studies of different classes of drugs in the same cellular and/or animal models are needed. We here provide a comprehensive overview of the chemical properties and some in vivo effects observed with various classes of compounds with a special emphasis on porphyrin-based compounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipid oxidation is the major form of deterioration in foods because it decreases food quality and nutritional value, and may have negative health implications. Selected aromatic plant extracts from leaves, flowers and stems of rosemary, thyme and lavender were investigated for their antioxidant activity. The total polyphenol content was determined by the Folin-Ciocalteu assay and the antioxidant capacity was determined by the Trolox equivalent antioxidant capacity, 1,1-diphenyl-2-picrylhydrazyl, oxygen radical absorbance capacity and ferric-reducing antioxidant power assays. For all four antioxidant assays, the extracts from thyme flowers, lavender leaves and thyme leaves had the highest antioxidant activity, followed by rosemary stems, rosemary leaves, and lavender stems, and the lavender flowers and thyme stems had the lowest antioxidant activity. The antioxidant activity was correlated with the polyphenol content, although minor deviations were observed. In oil-in-water emulsion, extracts from rosemary leaves and thyme leaves were most effective at retarding oxidation followed by the rosemary stems and thyme flowers. Extracts from thyme flowers and lavender leaves were less effective in the emulsion than predicted by the homogeneous antioxidant assays. This study demonstrated the potential use of plants extract as substitutes for synthetic antioxidants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipid oxidation is certainly one of the most important alterations that affect both oils or fats and foods that contain them. It is responsible for the development of unpleasant taste and smell in foods, making them unsuitable for consuming. The use of antioxidants permits a longer useful life of these products. This work presents a bibliographic review of research carried out in order to evaluate the antioxidant activity of natural or synthetic substances used in the conservation of food lipid. Among such substances, the following antioxidants are highlighted: butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tertiary butylhydroquinone (TBHQ), propyl gallate (PG), tocopherols, phenolic acids and isolated compounds from rosemary and oregano.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conduziu-se este trabalho, com o objetivo de avaliar a atividade antioxidante de diferentes extratos de cogumelo Agaricus blazei, bem como a estabilidade oxidativa do óleo de soja adicionado de extrato de cogumelo. O cogumelo seco em estufa a 55ºC e triturado (10 g) fui submetido à extração, à temperatura ambiente, com 100 mL de metanol e metanol:água (1:1) com duração de 6 e 12 horas para ambas as extrações. O extrato de maior atividade antioxidante, conforme o método DPPH, foi aplicado em óleo de soja na concentração de 0,1% de compostos fenólicos totais e, então, submetido ao método do Rancimat e ao teste acelerado em estufa a 60ºC por um período de 16 dias. Amostras de óleo foram retiradas da estufa cada 4 dias e analisadas quanto ao índice de peróxidos e dienos conjugados. Como parâmetros de comparação, foram utilizados os antioxidantes sintéticos BHT (100 mg/kg), TBHQ (50 mg/kg) e o óleo de soja isento de antioxidantes (controle). Os resultados demonstraram que o extrato metanólico:aquoso, com 6 horas de extração, apresentou maior atividade antioxidante. A aplicação desse extrato em óleo de soja proporcionou a seguinte ordem em relação à estabilidade oxidativa: TBHQ > extrato de cogumelo > BHT = óleo de soja (controle). O extrato de cogumelo também foi eficiente em relação à formação de peróxidos e dienos conjugados que, apesar de aumentarem ao longo do tempo, foi menor que o BHT, porém maior que o TBHQ. O extrato de cogumelo apresentou-se efetivo na proteção do óleo, podendo ser considerado um potencial antioxidante natural.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examined the antioxidant activity of lyophilized rosemary extract added to soybean oil, subjected to thermoxidation conditions and also its synergistic effect with the synthetic antioxidant tertiary butylhydroquinone (TBHQ). Soybean oil samples with no antioxidant added (SO), 3,000mg/kg rosemary extract (RE), 50mg/kg TBHQ (TBHQ), and a mixture of those two antioxidants (RE+TBHQ) were heated to 180C for 20h. After 0, 10 and 20h, the oxidative stability, total polar compounds, tocopherol content and fatty acid profile were determined. The addition of rosemary extract increased oxidative stability and resulted in a lower formation of total polar compounds and a higher retention of tocopherols. The RE treatment showed the highest amount of polyunsaturated fatty acids after 20h. There was not any synergy between TBHQ and rosemary extract in preventing oxidation of soybean oil. Rosemary extract showed a higher antioxidant potential when compared with TBHQ. PRACTICAL APPLICATIONS: Antioxidants are important ingredients in food processing because they have the capacity to protect foods, containing oils and fats, from damage caused by free radicals and reactive oxygen species. Synthetic antioxidants are widely used in the food industry; however, their utilization has been questioned because of toxicity. Therefore, there is a growing interest in the use of natural antioxidants to reduce or replace the synthetic antioxidants. Several species are used in cooking, medicine and by the pharmaceutical industry, standing out the rosemary. Being rich in compounds with high antioxidant activity, the rosemary extract can be used to replace synthetic antioxidants used in vegetable oils. © 2012 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper aimed to assess the tocopherol content and evaluate the fatty acid profile in soybean oil supplemented with salvia extract during heating, so as to verify the isolated and synergistic effect of natural and synthetic antioxidants. In order to obtain the extract, the lyophilized and crushed salvia was subjected to extraction by ethyl alcohol for 30 min, with a 1:20 salvia:ethyl alcohol ratio, under continuous agitation. Afterwards, the mixture was filtered and the supernatant was subjected to the rotary evaporator at 40 °C. Later the control treatments, ES (3000 mg kg-1 salvia extract), TBHQ (50 mg kg-1), and mixture (ES+50 mg kg-1 TBHQ) were prepared and subjected to 180 °C for 20 h. Samples were taken in time intervals 0, 10, and 20 h and analysed in terms of tocopherol content and fatty acid profile. Regarding the tocopherol and fatty acid profile analysis, it was found that the extract proved efficient in oil protection, when added isolated to soybean oil subjected to thermo oxidation. According to the results, salvia extract is a viable alternative that might be applied in industrialized processing of oils as natural antioxidant.