903 resultados para Synthetic Control Method
Resumo:
The synthetic control method (SCM) is a new, popular method developed for the purpose of estimating the effect of an intervention when only one single unit has been exposed. Other similar, unexposed units are combined into a synthetic control unit intended to mimic the evolution in the exposed unit, had it not been subject to exposure. As the inference relies on only a single observational unit, the statistical inferential issue is a challenge. In this paper, we examine the statistical properties of the estimator, study a number of features potentially yielding uncertainty in the estimator, discuss the rationale for statistical inference in relation to SCM, and provide a Web-app for researchers to aid in their decision of whether SCM is powerful for a specific case study. We conclude that SCM is powerful with a limited number of controls in the donor pool and a fairly short pre-intervention time period. This holds as long as the parameter of interest is a parametric specification of the intervention effect, and the duration of post-intervention period is reasonably long, and the fit of the synthetic control unit to the exposed unit in the pre-intervention period is good.
Resumo:
The synthetic control (SC) method has been recently proposed as an alternative to estimate treatment effects in comparative case studies. The SC relies on the assumption that there is a weighted average of the control units that reconstruct the potential outcome of the treated unit in the absence of treatment. If these weights were known, then one could estimate the counterfactual for the treated unit using this weighted average. With these weights, the SC would provide an unbiased estimator for the treatment effect even if selection into treatment is correlated with the unobserved heterogeneity. In this paper, we revisit the SC method in a linear factor model where the SC weights are considered nuisance parameters that are estimated to construct the SC estimator. We show that, when the number of control units is fixed, the estimated SC weights will generally not converge to the weights that reconstruct the factor loadings of the treated unit, even when the number of pre-intervention periods goes to infinity. As a consequence, the SC estimator will be asymptotically biased if treatment assignment is correlated with the unobserved heterogeneity. The asymptotic bias only vanishes when the variance of the idiosyncratic error goes to zero. We suggest a slight modification in the SC method that guarantees that the SC estimator is asymptotically unbiased and has a lower asymptotic variance than the difference-in-differences (DID) estimator when the DID identification assumption is satisfied. If the DID assumption is not satisfied, then both estimators would be asymptotically biased, and it would not be possible to rank them in terms of their asymptotic bias.
Resumo:
An alternative vector control method, using lambda-cyhalothrin impregnated wide-mesh gauze covering openings in the walls of the houses was developed in an area in the Eastern part of the interior of Suriname. Experimental hut observations showed that Anopheles darlingi greatly reduced their biting activity (99-100%) during the first 5 months after impregnation. A model assay showed high mortality both of mosquitoes repelled by the gauze as well as of those that succeeded in getting through it. A field application test in 270 huts showed good acceptance by the population and good durability of the applied gauze. After introducing the method in the entire working area, replacing DDT residual housespraying, the malaria prevalence, of 25-37% before application dropped and stabilized at between 5 and 10% within one year. The operational costs were less than those of the previously used DDT housespraying program, due to a 50% reduction in the cost of materials used. The method using widemesh gauze impregnated with lambdacyhalothrin strongly affects the behavior of An. darlingi. It is important to examine the effect of the method on malaria transmission further, since data indirectly obtained suggest substantial positive results.
Resumo:
This paper presents a direct power control (DPC) for three-phase matrix converters operating as unified power flow controllers (UPFCs). Matrix converters (MCs) allow the direct ac/ac power conversion without dc energy storage links; therefore, the MC-based UPFC (MC-UPFC) has reduced volume and cost, reduced capacitor power losses, together with higher reliability. Theoretical principles of direct power control (DPC) based on sliding mode control techniques are established for an MC-UPFC dynamic model including the input filter. As a result, line active and reactive power, together with ac supply reactive power, can be directly controlled by selecting an appropriate matrix converter switching state guaranteeing good steady-state and dynamic responses. Experimental results of DPC controllers for MC-UPFC show decoupled active and reactive power control, zero steady-state tracking error, and fast response times. Compared to an MC-UPFC using active and reactive power linear controllers based on a modified Venturini high-frequency PWM modulator, the experimental results of the advanced DPC-MC guarantee faster responses without overshoot and no steady-state error, presenting no cross-coupling in dynamic and steady-state responses.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
The present invention relates to vertebrate pesticide compositions for use in controlling pests such as rats and mice. The active substances in the vertebrate pesticide compositions comprise at least two components: a high concentration of low-toxicity anticoagulant and a low concentration of high-toxicity anticoagulant. The vertebrate pesticide compositions may also comprise various other components.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this article, we consider the synthetic control chart with two-stage sampling (SyTS chart) to control the process mean and variance. During the first stage, one item of the sample is inspected; if its value X, is close to the target value of the process mean, then the sampling is interrupted. Otherwise, the sampling goes on to the second stage, where the remaining items are inspected and the statistic T = Sigma [x(i) - mu(0) + xi sigma(0)](2) is computed taking into account all items of the sample. The design parameter is function of X-1. When the statistic T is larger than a specified value, the sample is classified as nonconforming. According to the synthetic procedure, the signal is based on Conforming Run Length (CRL). The CRL is the number of samples taken from the process since the previous nonconforming sample until the occurrence of the next nonconforming sample. If the CRL is sufficiently small, then a signal is generated. A comparative study shows that the SyTS chart and the joint X and S charts with double sampling are very similar in performance. However, from the practical viewpoint, the SyTS chart is more convenient to administer than the joint charts.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose - The aim of this paper is to present a synthetic chart based on the non-central chi-square statistic that is operationally simpler and more effective than the joint X̄ and R chart in detecting assignable cause(s). This chart will assist in identifying which (mean or variance) changed due to the occurrence of the assignable causes. Design/methodology/approach - The approach used is based on the non-central chi-square statistic and the steady-state average run length (ARL) of the developed chart is evaluated using a Markov chain model. Findings - The proposed chart always detects process disturbances faster than the joint X̄ and R charts. The developed chart can monitor the process instead of looking at two charts separately. Originality/value - The most important advantage of using the proposed chart is that practitioners can monitor the process by looking at only one chart instead of looking at two charts separately. © Emerald Group Publishing Limted.
Resumo:
In this article, we consider the synthetic control chart with two-stage sampling (SyTS chart) to control bivariate processes. During the first stage, one item of the sample is inspected and two correlated quality characteristics (x;y) are measured. If the Hotelling statistic T1 2 for these individual observations of (x;y) is lower than a specified value UCL 1 the sampling is interrupted. Otherwise, the sampling goes on to the second stage, where the remaining items are inspected and the Hotelling statistic T2 2 for the sample means of (x;y) is computed. When the statistic T2 2 is larger than a specified value UCL2, the sample is classified as nonconforming. According to the synthetic control chart procedure, the signal is based on the number of conforming samples between two neighbor nonconforming samples. The proposed chart detects process disturbances faster than the bivariate charts with variable sample size and it is from the practical viewpoint more convenient to administer.
Resumo:
Here, a simplified dynamical model of a magnetically levitated body is considered. The origin of an inertial Cartesian reference frame is set at the pivot point of the pendulum on the levitated body in its static equilibrium state (ie, the gap between the magnet on the base and the magnet on the body, in this state). The governing equations of motion has been derived and the characteristic feature of the strategy is the exploitation of the nonlinear effect of the inertial force associated, with the motion of a pendulum-type vibration absorber driven, by an appropriate control torque [4]. In the present paper, we analyzed the nonlinear dynamics of problem, discussed the energy transfer between the main system and the pendulum in time, and developed State Dependent Riccati Equation (SDRE) control design to reducing the unstable oscillatory movement of the magnetically levitated body to a stable fixed point. The simulations results showed the effectiveness of the (SDRE) control design. Copyright © 2011 by ASME.
Resumo:
All the interconnected regulated systems are prone to impedance-based interactions making them sensitive to instability and transient-performance degradation. The applied control method affects significantly the characteristics of the converter in terms of sensitivity to different impedance interactions. This paper provides for the first time the whole set of impedance-type internal parameters and the formulas according to which the interaction sensitivity can be fully explained and analyzed. The formulation given in this paper can be utilized equally either based on measured frequency responses or on predicted analytic transfer functions. Usually, the distributed dc-dc systems are constructed by using ready-made power modules without having thorough knowledge on the actual power-stage and control-system designs. As a consequence, the interaction characterization has to be based on the frequency responses measureable via the input and output terminals. A buck converter with four different control methods is experimentally characterized in frequency domain to demonstrate the effect of control method on the interaction sensitivity. The presented analytical models are used to explain the phenomena behind the changes in the interaction sensitivity.