989 resultados para Surgical technology.
Resumo:
Agency partners: Illinois State Board of Education, Illinois Community College Board, Illinois Board of Higher Education, Illinois Dept. of Commerce and Community Affairs, Illinois Dept. of Employment Security.
Resumo:
Life expectancy continuously increases but our society faces age-related conditions. Among musculoskeletal diseases, osteoporosis associated with risk of vertebral fracture and degenerative intervertebral disc (IVD) are painful pathologies responsible for tremendous healthcare costs. Hence, reliable diagnostic tools are necessary to plan a treatment or follow up its efficacy. Yet, radiographic and MRI techniques, respectively clinical standards for evaluation of bone strength and IVD degeneration, are unspecific and not objective. Increasingly used in biomedical engineering, CT-based finite element (FE) models constitute the state-of-art for vertebral strength prediction. However, as non-invasive biomechanical evaluation and personalised FE models of the IVD are not available, rigid boundary conditions (BCs) are applied on the FE models to avoid uncertainties of disc degeneration that might bias the predictions. Moreover, considering the impact of low back pain, the biomechanical status of the IVD is needed as a criterion for early disc degeneration. Thus, the first FE study focuses on two rigid BCs applied on the vertebral bodies during compression test of cadaver vertebral bodies, vertebral sections and PMMA embedding. The second FE study highlights the large influence of the intervertebral disc’s compliance on the vertebral strength, damage distribution and its initiation. The third study introduces a new protocol for normalisation of the IVD stiffness in compression, torsion and bending using MRI-based data to account for its morphology. In the last study, a new criterion (Otsu threshold) for disc degeneration based on quantitative MRI data (axial T2 map) is proposed. The results show that vertebral strength and damage distribution computed with rigid BCs are identical. Yet, large discrepancies in strength and damage localisation were observed when the vertebral bodies were loaded via IVDs. The normalisation protocol attenuated the effect of geometry on the IVD stiffnesses without complete suppression. Finally, the Otsu threshold computed in the posterior part of annulus fibrosus was related to the disc biomechanics and meet objectivity and simplicity required for a clinical application. In conclusion, the stiffness normalisation protocol necessary for consistent IVD comparisons and the relation found between degeneration, mechanical response of the IVD and Otsu threshold lead the way for non-invasive evaluation biomechanical status of the IVD. As the FE prediction of vertebral strength is largely influenced by the IVD conditions, this data could also improve the future FE models of osteoporotic vertebra.
Resumo:
Aortic stenosis has become the most frequent type of valvular heart disease in Europe and North America and presents in the large majority of patients as calcified aortic stenosis in adults of advanced age. Surgical aortic valve replacement has been recognized to be the definitive therapy which improves considerably survival for severe aortic stenosis since more than 40 years. In the most recent period, operative mortality of isolated aortic valve replacement for aortic stenosis varies between 1–3% in low-risk patients younger than 70 years and between 4 and 8% in selected older adults. Long-term survival following aortic valve replacement is close to that observed in a control population of similar age. Numerous observational studies have consistently demonstrated that corrective surgery in symptomatic patients is invariably followed by a subjective improvement in quality of life and a substantial increase in survival rates. More recently, transcatheter aortic valve implantation (TAVI) has been demonstrated to be feasible in patients with high surgical risk using either a retrograde transfemoral or transsubclavian approach or an antegrade, transapical access. Reported 30-day mortality ranges between 5 and 15%) and is acceptable when compared to the risk predicted by the logistic EuroSCORE (varying between 20 and 35%) and the STS Score, although the EuroScore has been shown to markedly overestimate the effective operative risk. One major concern remains the high rate of paravalvular regurgitation which is observed in up to 85% of the patients and which requires further follow-up and critical evaluation. In addition, long-term durability of these valves with a focus on the effects of crimping remains to be addressed, although 3-5 year results are promising. Sutureless biological valves were designed to simplify and significantly accelerate the surgical replacement of a diseased valve and allow complete excision of the calcified native valve. Until now, there are 3 different sutureless prostheses that have been approved. The 3f Enable valve from ATS-Medtronic received CE market approval in 2010, the Perceval S from Sorin during Q1 of 2011 and the intuity sutureless prosthesis from Edwards in 2012. All these devices aim to facilitate valve surgery and therefore have the potential to decrease the invasivness and to shorten the conventional procedure without compromise in term of excision of the diseased valve. This review summarizes the history and the current knowledge of sutureless valve technology.
Resumo:
PURPOSE: To assess the literature on accuracy and clinical performance of computer technology applications in surgical implant dentistry. MATERIALS AND METHODS: Electronic and manual literature searches were conducted to collect information about (1) the accuracy and (2) clinical performance of computer-assisted implant systems. Meta-regression analysis was performed for summarizing the accuracy studies. Failure/complication rates were analyzed using random-effects Poisson regression models to obtain summary estimates of 12-month proportions. RESULTS: Twenty-nine different image guidance systems were included. From 2,827 articles, 13 clinical and 19 accuracy studies were included in this systematic review. The meta-analysis of the accuracy (19 clinical and preclinical studies) revealed a total mean error of 0.74 mm (maximum of 4.5 mm) at the entry point in the bone and 0.85 mm at the apex (maximum of 7.1 mm). For the 5 included clinical studies (total of 506 implants) using computer-assisted implant dentistry, the mean failure rate was 3.36% (0% to 8.45%) after an observation period of at least 12 months. In 4.6% of the treated cases, intraoperative complications were reported; these included limited interocclusal distances to perform guided implant placement, limited primary implant stability, or need for additional grafting procedures. CONCLUSION: Differing levels and quantity of evidence were available for computer-assisted implant placement, revealing high implant survival rates after only 12 months of observation in different indications and a reasonable level of accuracy. However, future long-term clinical data are necessary to identify clinical indications and to justify additional radiation doses, effort, and costs associated with computer-assisted implant surgery.
Resumo:
Objective: To systematically review the published evidence of the impact of health information technology (HIT) on the quality of medical and health care specifically clinicians’ adherence to evidence-based guidelines and the corresponding impact this had on patient clinical outcomes. In order to be as inclusive as possible the research examined literature discussing the use of health information technologies and systems in both medical care such as clinical and surgical, and other health care such as allied health and preventive services.----- Design: Systematic review----- Data Sources: Relevant literature was systematically searched on English language studies indexed in MEDLINE and CINAHL(1998 to 2008), Cochrane Library, PubMed, Database of Abstracts of Review of Effectiveness (DARE), Google scholar and other relevant electronic databases. A search for eligible studies (matching the inclusion criteria) was also performed by searching relevant conference proceedings available through internet and electronic databases, as well as using reference lists identified from cited papers.----- Selection criteria: Studies were included in the review if they examined the impact of Electronic Health Record (EHR), Computerised Provider Order-Entry (CPOE), or Decision Support System (DS); and if the primary outcomes of the studies were focused on the level of compliance with evidence-based guidelines among clinicians. Measures could be either changes in clinical processes resulting from a change of the providers’ behaviour or specific patient outcomes that demonstrated the effectiveness of a particular treatment given by providers. ----- Methods: Studies were reviewed and summarised in tabular and text form. Due to heterogeneity between studies, meta-analysis was not performed.----- Results: Out of 17 studies that assessed the impact of health information technology on health care practitioners’ performance, 14 studies revealed a positive improvement in relation to their compliance with evidence-based guidelines. The primary domain of improvement was evident from preventive care and drug ordering studies. Results from the studies that included an assessment for patient outcomes however, were insufficient to detect either clinically or statistically important improvements as only a small proportion of these studies found benefits. For instance, only 3 studies had shown positive improvement, while 5 studies revealed either no change or adverse outcomes.----- Conclusion: Although the number of included studies was relatively small for reaching a conclusive statement about the effectiveness of health information technologies and systems on clinical care, the results demonstrated consistency with other systematic reviews previously undertaken. Widescale use of HIT has been shown to increase clinician’s adherence to guidelines in this review. Therefore, it presents ongoing opportunities to maximise the uptake of research evidence into practice for health care organisations, policy makers and stakeholders.
Resumo:
This research has established, through ultrasound, near infrared spectroscopy and biomechanics experiments, parameters and parametric relationships that can form the framework for quantifying the integrity of the articular cartilage-on-bone laminate, and objectively distinguish between normal/healthy and abnormal/degenerated joint tissue, with a focus on articular cartilage. This has been achieved by: 1. using traditional experimental methods to produce new parameters for cartilage assessment; 2. using novel methodologies to develop new parameters; and 3. investigating the interrelationships between mechanical, structural and molec- ular properties to identify and select those parameters and methodologies that can be used in a future arthroscopic probe based on points 1 and 2. By combining the molecular, micro- and macro-structural characteristics of the tissue with its mechanical properties, we arrive at a set of critical benchmarking parameters for viable and early-stage non-viable cartilage. The interrelationships between these characteristics, examined using a multivariate analysis based on principal components analysis, multiple linear regression and general linear modeling, could then to deter- mine those parameters and relationships which have the potential to be developed into a future clinical device. Specifically, this research has found that the ultrasound and near infrared techniques can subsume the mechanical parameters and combine to characterise the tissue at the molecular, structural and mechanical levels over the full depth of the cartilage matrix. It is the opinion in this thesis that by enabling the determination of the precise area of in uence of a focal defect or disease in the joint, demarcating the boundaries of articular cartilage with dierent levels of degeneration around a focal defect, better surgical decisions that will advance the processes of joint management and treatment will be achieved. Providing the basis for a surgical tool, this research will contribute to the enhancement and quanti�cation of arthroscopic procedures, extending to post- treatment monitoring and as a research tool, will enable a robust method for evaluating developing (particularly focalised) treatments.
Resumo:
Over the past ten years, minimally invasive plate osteosynthesis (MIPO) for the fixation of long bone fractures has become a clinically accepted method with good outcomes, when compared to the conventional open surgical approach (open reduction internal fixation, ORIF). However, while MIPO offers some advantages over ORIF, it also has some significant drawbacks, such as a more demanding surgical technique and increased radiation exposure. No clinical or experimental study to date has shown a difference between the healing outcomes in fractures treated with the two surgical approaches. Therefore, a novel, standardised severe trauma model in sheep has been developed and validated in this project to examine the effect of the two surgical approaches on soft tissue and fracture healing. Twenty four sheep were subjected to severe soft tissue damage and a complex distal femur fracture. The fractures were initially stabilised with an external fixator. After five days of soft tissue recovery, internal fixation with a plate was applied, randomised to either MIPO or ORIF. Within the first fourteen days, the soft tissue damage was monitored locally with a compartment pressure sensor and systemically by blood tests. The fracture progress was assessed fortnightly by x-rays. The sheep were sacrificed in two groups after four and eight weeks, and CT scans and mechanical testing performed. Soft tissue monitoring showed significantly higher postoperative Creatine Kinase and Lactate Dehydrogenase values in the ORIF group compared to MIPO. After four weeks, the torsional stiffness was significantly higher in the MIPO group (p=0.018) compared to the ORIF group. The torsional strength also showed increased values for the MIPO technique (p=0.11). The measured total mineralised callus volumes were slightly higher in the ORIF group. However, a newly developed morphological callus bridging score showed significantly higher values for the MIPO technique (p=0.007), with a high correlation to the mechanical properties (R2=0.79). After eight weeks, the same trends continued, but without statistical significance. In summary, this clinically relevant study, using the newly developed severe trauma model in sheep, clearly demonstrates that the minimally invasive technique minimises additional soft tissue damage and improves fracture healing in the early stage compared to the open surgical approach method.
Resumo:
Real-world business processes rely on the availability of scarce, shared resources, both human and non-human. Current workflow management systems support allocation of individual human resources to tasks but lack support for the full range of resource types used in practice, and the inevitable constraints on their availability and applicability. Based on past experience with resource-intensive workflow applications, we derive generic requirements for a workflow system which can use its knowledge of resource capabilities and availability to help create feasible task schedules. We then define the necessary architecture for implementing such a system and demonstrate its practicality through a proof-of-concept implementation. This work is presented in the context of a real-life surgical care process observed in a number of German hospitals.
Resumo:
The Australian e-Health Research Centre in collaboration with the Queensland University of Technology's Paediatric Spine Research Group is developing software for visualisation and manipulation of large three-dimensional (3D) medical image data sets. The software allows the extraction of anatomical data from individual patients for use in preoperative planning. State-of-the-art computer technology makes it possible to slice through the image dataset at any angle, or manipulate 3D representations of the data instantly. Although the software was initially developed to support planning for scoliosis surgery, it can be applied to any dataset whether obtained from computed tomography, magnetic resonance imaging or any other imaging modality.
Resumo:
Background Total hip arthroplasty (THA) is a commonly performed procedure and numbers are increasing with ageing populations. One of the most serious complications in THA are surgical site infections (SSIs), caused by pathogens entering the wound during the procedure. SSIs are associated with a substantial burden for health services, increased mortality and reduced functional outcomes in patients. Numerous approaches to preventing these infections exist but there is no gold standard in practice and the cost-effectiveness of alternate strategies is largely unknown. Objectives The aim of this project was to evaluate the cost-effectiveness of strategies claiming to reduce deep surgical site infections following total hip arthroplasty in Australia. The objectives were: 1. Identification of competing strategies or combinations of strategies that are clinically relevant to the control of SSI related to hip arthroplasty 2. Evidence synthesis and pooling of results to assess the volume and quality of evidence claiming to reduce the risk of SSI following total hip arthroplasty 3. Construction of an economic decision model incorporating cost and health outcomes for each of the identified strategies 4. Quantification of the effect of uncertainty in the model 5. Assessment of the value of perfect information among model parameters to inform future data collection Methods The literature relating to SSI in THA was reviewed, in particular to establish definitions of these concepts, understand mechanisms of aetiology and microbiology, risk factors, diagnosis and consequences as well as to give an overview of existing infection prevention measures. Published economic evaluations on this topic were also reviewed and limitations for Australian decision-makers identified. A Markov state-transition model was developed for the Australian context and subsequently validated by clinicians. The model was designed to capture key events related to deep SSI occurring within the first 12 months following primary THA. Relevant infection prevention measures were selected by reviewing clinical guideline recommendations combined with expert elicitation. Strategies selected for evaluation were the routine use of pre-operative antibiotic prophylaxis (AP) versus no use of antibiotic prophylaxis (No AP) or in combination with antibiotic-impregnated cement (AP & ABC) or laminar air operating rooms (AP & LOR). The best available evidence for clinical effect size and utility parameters was harvested from the medical literature using reproducible methods. Queensland hospital data were extracted to inform patients’ transitions between model health states and related costs captured in assigned treatment codes. Costs related to infection prevention were derived from reliable hospital records and expert opinion. Uncertainty of model input parameters was explored in probabilistic sensitivity analyses and scenario analyses and the value of perfect information was estimated. Results The cost-effectiveness analysis was performed from a health services perspective using a hypothetical cohort of 30,000 THA patients aged 65 years. The baseline rate of deep SSI was 0.96% within one year of a primary THA. The routine use of antibiotic prophylaxis (AP) was highly cost-effective and resulted in cost savings of over $1.6m whilst generating an extra 163 QALYs (without consideration of uncertainty). Deterministic and probabilistic analysis (considering uncertainty) identified antibiotic prophylaxis combined with antibiotic-impregnated cement (AP & ABC) to be the most cost-effective strategy. Using AP & ABC generated the highest net monetary benefit (NMB) and an incremental $3.1m NMB compared to only using antibiotic prophylaxis. There was a very low error probability that this strategy might not have the largest NMB (<5%). Not using antibiotic prophylaxis (No AP) or using both antibiotic prophylaxis combined with laminar air operating rooms (AP & LOR) resulted in worse health outcomes and higher costs. Sensitivity analyses showed that the model was sensitive to the initial cohort starting age and the additional costs of ABC but the best strategy did not change, even for extreme values. The cost-effectiveness improved for a higher proportion of cemented primary THAs and higher baseline rates of deep SSI. The value of perfect information indicated that no additional research is required to support the model conclusions. Conclusions Preventing deep SSI with antibiotic prophylaxis and antibiotic-impregnated cement has shown to improve health outcomes among hospitalised patients, save lives and enhance resource allocation. By implementing a more beneficial infection control strategy, scarce health care resources can be used more efficiently to the benefit of all members of society. The results of this project provide Australian policy makers with key information about how to efficiently manage risks of infection in THA.
Resumo:
This project was an observational study of outpatients following lower limb surgical procedures for removal of skin cancers. Findings highlight a previously unreported high surgical site failure rate. Results also identified four potential risk factors (increasing age, presence of leg pain, split skin graft and haematoma) which negatively impact on surgical site healing in this population.