919 resultados para Surface microscopy
Resumo:
Metastable, active, or nonequilibrium states due to the presence of abnormal structures and various types of defects are well known in metallurgy. The role of such states at gold surfaces in neutral aqueous media (an important electrode system in the microsensor area) was explored using cyclic voltammetry. It was demonstrated that, as postulated in earlier work from this laboratory, there is a close relationship between premonolayer oxidation, multilayer hydrous oxide reduction and electrocatalytic behaviour in the case of this and other metal electrode systems. Some of the most active, and therefore most important, entities at surfaces (e.g., metal adatoms) are not readily imageable or detectable by high resolution surface microscopy techniques. Cyclic voltammetry, however, provides significant, though not highly specific, information about such species. The main conclusion is that further practical and theoretical work on active states of metal surfaces is highly desirable as their behaviour is not simple and is of major importance in many electrocatalytic processes.
Resumo:
Correlative fractography is a new expression proposed here to describe a new method for the association between scanning electron microscopy (SEM) and light microscopy (LM) for the qualitative and quantitative analysis of fracture surfaces. This article presents a new method involving the fusion of one elevation map obtained by extended depth from focus reconstruction from LM with exactly the same area by SEM and associated techniques, as X-ray mapping. The true topographic information is perfectly associated to local fracture mechanisms with this new technique, presented here as an alternative to stereo-pair reconstruction for the investigation of fractured components. The great advantage of this technique resides in the possibility of combining any imaging methods associated with LM and SEM for the same observed field from fracture surface. © Microscopy Society of America 2013.
Resumo:
We have explored the effects of atmospheric environment on Kelvin force microscopy (KFM) measurements of potential difference between different regions of test polycrystalline diamond surfaces. The diamond films were deposited by microwave plasma-assisted chemical vapor deposition, which naturally produces hydrogen terminations on the surface of the films formed. Selected regions were patterned by electron-beam lithography and chemical terminations of oxygen or fluorine were created by exposure to an oxygen or fluorine plasma source. For KFM imaging, the samples were mounted in a hood with a constant flow of helium gas. Successive images were taken over a 5-h period showing the effect of the environment on KFM imaging. We conclude that the helium flow removes water molecules adsorbed on the surface of the samples, resulting in differences in surface potential between adjacent regions. The degree of water removal is different for surfaces with different terminations. The results highlight the importance of taking into account the atmospheric environment when carrying out KFM analysis. (C) 2012 Wiley Periodicals, Inc.
Resumo:
It was demonstrated recently that dramatic changes in the redox behaviour of gold/aqueous solution interfaces may be observed following either cathodic or thermal electrode pretreatment. Further work on the cathodic pretreatment of gold in acid solution revealed that as the activity of the gold surface was increased, its performance as a substrate for hydrogen gas evolution under constant potential conditions deteriorated. The change in activity of the gold atoms at the interface, which was attributed to a hydrogen embrittlement process (the occurrence of the latter was subsequently checked by surface microscopy), was confirmed, as in earlier work, by the appearance of a substantial anodic peak at ca. 0.5 V (RHE) in a post-activation positive sweep. Changes in the catalytic activity of a metal surface reflect the fact that the structure (or topography), thermodynamic activity and electronic properties of a surface are dependent not only on pretreatment but also, in the case of the hydrogen evolution reaction, vary with time during the course of reaction. As will be reported shortly, similar (and often more dramatic) time-dependent behaviour was observed for hydrogen gas evolution on other metal electrodes.
Resumo:
Self-assembly of carbon nanotip (CNTP) structures on Ni-based catalyst in chemically active inductively coupled plasmas of CH 4 + H 2 + Ar gas mixtures is reported. By varying the process conditions, it appears possible to control the shape, size, and density of CNTPs, content of the nanocrystalline phase in the films, as well as to achieve excellent crystallinity, graphitization, uniformity and vertical alignment of the resulting nanostructures at substrate temperatures 300-500°C and low gas pressures (below 13.2 Pa). This study provides a simple and efficient plasma-enhanced chemical vapor deposition (PECVD) technique for the fabrication of vertically aligned CNTP arrays for electron field emitters.
Resumo:
The controlled-release characteristics of matrix silicone intravaginal rings loaded with between 100 and 971 mg of nonoxynol-9 have been investigated with a view to developing a ring that may offer a new female-controlled method for the prevention of transmission of sexually transmitted diseases, particularly HIV. Intravaginal rings containing 253, 487 and 971 mg of nonoxynol-9 provided a daily release of 2 mg or more over the 8-day release period, the minimal amount of nonoxynol-9 considered to provide an effective vaginal concentration for the prevention of HIV. Furthermore, the maximum daily release of N9 was about 6 mg, an amount significantly smaller than that observed for other nonoxynol-9 products whose large daily doses may in fact increase the occurrence of HIV by causing epithelial damage to the vaginal tissue. The release mechanism of the liquid nonoxynol-9 from the intravaginal rings has also been investigated and compared to models describing the release of solid drugs from the rings. It has been demonstrated through release studies and surface microscopy that a drug depletion zone is not established in such liquid-loaded intravaginal ring systems, with implications for the release kinetics. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We describe the multidisciplinary findings in a pre-Columbian mummy head from Southern Peru (Cahuachi, Nazca civilisation, radiocarbon dating between 120 and 750 AD) of a mature male individual (40-60 years) with the first two vertebrae attached in pathological position. Accordingly, the atlanto-axial transition (C1/C2) was significantly rotated and dislocated at 38° angle associated with a bulging brownish mass that considerably reduced the spinal canal by circa 60%. Using surface microscopy, endoscopy, high-resolution multi-slice computer tomography, paleohistology and immunohistochemistry, we identified an extensive epidural hematoma of the upper cervical spinal canal-extending into the skull cavity-obviously due to a rupture of the left vertebral artery at its transition between atlas and skull base. There were no signs of fractures of the skull or vertebrae. Histological and immunohistochemical examinations clearly identified dura, brain residues and densely packed corpuscular elements that proved to represent fresh epidural hematoma. Subsequent biochemical analysis provided no evidence for pre-mortal cocaine consumption. Stable isotope analysis, however, revealed significant and repeated changes in the nutrition during his last 9 months, suggesting high mobility. Finally, the significant narrowing of the rotational atlanto-axial dislocation and the epidural hematoma probably caused compression of the spinal cord and the medulla oblongata with subsequent respiratory arrest. In conclusion, we suggest that the man died within a short period of time (probably few minutes) in an upright position with the head rotated rapidly to the right side. In paleopathologic literature, trauma to the upper cervical spine has as yet only very rarely been described, and dislocation of the vertebral bodies has not been presented.
Resumo:
In vivo confocal microscopy (IVCM) is an emerging technology that provides minimally invasive, high resolution, steady-state assessment of the ocular surface at the cellular level. Several challenges still remain but, at present, IVCM may be considered a promising technique for clinical diagnosis and management. This mini-review summarizes some key findings in IVCM of the ocular surface, focusing on recent and promising attempts to move “from bench to bedside”. IVCM allows prompt diagnosis, disease course follow-up, and management of potentially blinding atypical forms of infectious processes, such as acanthamoeba and fungal keratitis. This technology has improved our knowledge of corneal alterations and some of the processes that affect the visual outcome after lamellar keratoplasty and excimer keratorefractive surgery. In dry eye disease, IVCM has provided new information on the whole-ocular surface morphofunctional unit. It has also improved understanding of pathophysiologic mechanisms and helped in the assessment of prognosis and treatment. IVCM is particularly useful in the study of corneal nerves, enabling description of the morphology, density, and disease- or surgically induced alterations of nerves, particularly the subbasal nerve plexus. In glaucoma, IVCM constitutes an important aid to evaluate filtering blebs, to better understand the conjunctival wound healing process, and to assess corneal changes induced by topical antiglaucoma medications and their preservatives. IVCM has significantly enhanced our understanding of the ocular response to contact lens wear. It has provided new perspectives at a cellular level on a wide range of contact lens complications, revealing findings that were not previously possible to image in the living human eye. The final section of this mini-review provides a focus on advances in confocal microscopy imaging. These include 2D wide-field mapping, 3D reconstruction of the cornea and automated image analysis.
Resumo:
The time evolution of the film thickness and domain formation of octadecylamine molecules adsorbed oil a mica surface is investigated Using atomic force microscopy. The adsorbed Film thickness is determined by measuring the height profile across the mica-amine interface of a mica surface partially immersed in a 15 mM solution of octadecylamine in chloroform. Using this novel procedure, adsorption of amine on mica is found to occur in three distinct stages, with morphologically distinct domain Formation and growth occurring during each stage. In the first stage, where adsorption is primarily in the thin-film regime, all average Film thickness of 0.2 (+/- 0.3) nm is formed for exposure times below 30 s and 0.8 (+/- 0.2) nm for 60 s of immersion time. During this stage, large sample spanning domains are observed. The second stage, which occurs between 60-300 s, is associated with it regime of rapid film growth, and the film thickness increases from about 0.8 to 25 nm during this stage. Once the thick-film regime is established, further exposure to the amine solution results in all increase in the domain area, and it regime of lateral domain growth is observed. In this stage, the domain area coverage grows from 38 to 75%, and the FTIR spectra reveal an increased level of crystallinity in the film. Using it diffusion-controlled model and it two-step Langmuir isotherm, the time evolution of the film growth is quantitatively captured. The model predicts the time at which the thin to thick film transition occurs as well its the time required for complete film growth at longer times. The Ward-Tordai equation is also solved to determine the model parameters in the monolayer (thin-film) regime, which occurs during the initial stages of film growth.
Resumo:
Dispersion of nanoparticles in polymer nanocomposite films determines the application potential of these systems as novel materials with unique physical properties. Grafting polymers to, mostly inorganic, nanoparticles has been suggested as an effective strategy to enhance dispersion and hence the efficacy of materials. In this review, we discuss the various parameters which control dispersion of polymer grafted nanoparticles in polymer nanocomposite films. We discuss how surface x-ray scattering and microscopy can provide complementary and unique information in thin polymer nanocomposite films to unravel the subtle interplay of entropic and surface interactions, mediated by confinement, that leads to enhanced dispersion of the nanoparticles in these films. (C) 2014 AIP Publishing LLC.