914 resultados para Supply Chain Simulation, Incomplete Datasets, Variable Cycle Times
Resumo:
Supply Chain Simulation (SCS) is applied to acquire information to support outsourcing decisions but obtaining enough detail in key parameters can often be a barrier to making well informed decisions.
One aspect of SCS that has been relatively unexplored is the impact of inaccurate data around delays within the SC. The impact of the magnitude and variability of process cycle time on typical performance indicators in a SC context is studied.
System cycle time, WIP levels and throughput are more sensitive to the magnitude of deterministic deviations in process cycle time than variable deviations. Manufacturing costs are not very sensitive to these deviations.
Future opportunities include investigating the impact of process failure or product defects, including logistics and transportation between SC members and using alternative costing methodologies.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial
Resumo:
Nota: A autora agradece à Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) pela concessão de bolsa de estudos para o desenvolvimento deste projeto de pesquisa.
Resumo:
In recent years, global supply chains have increasingly suffered from reliability issues due to various external and difficult to-manage events. The following paper aims to build an integrated approach for the design of a Supply Chain under the risk of disruption and demand fluctuation. The study is divided in two parts: a mathematical optimization model, to identify the optimal design and assignments customer-facility, and a discrete-events simulation of the resulting network. The first one describes a model in which plant location decisions are influenced by variables such as distance to customers, investments needed to open plants and centralization phenomena that help contain the risk of demand variability (Risk Pooling). The entire model has been built with a proactive approach to manage the risk of disruptions assigning to each customer two types of open facilities: one that will serve it under normal conditions and a back-up facility, which comes into operation when the main facility has failed. The study is conducted on a relatively small number of instances due to the computational complexity, a matheuristic approach can be found in part A of the paper to evaluate the problem with a larger set of players. Once the network is built, a discrete events Supply Chain simulation (SCS) has been implemented to analyze the stock flow within the facilities warehouses, the actual impact of disruptions and the role of the back-up facilities which suffer a great stress on their inventory due to a large increase in demand caused by the disruptions. Therefore, simulation follows a reactive approach, in which customers are redistributed among facilities according to the interruptions that may occur in the system and to the assignments deriving from the design model. Lastly, the most important results of the study will be reported, analyzing the role of lead time in a reactive approach for the occurrence of disruptions and comparing the two models in terms of costs.
Resumo:
Interest towards working capital management increased among practitioners and researchers because the financial crisis of 2008 caused the deterioration of the general financial situation. The importance of managing working capital effectively increased dramatically during the financial crisis. On one hand, companies highlighted the importance of working capital management as part of short-term financial management to overcome funding difficulties. On the other hand, in academia, it has been highlighted the need to analyze working capital management from a wider perspective namely from the value chain perspective. Previously, academic articles mostly discussed working capital management from a company-centered perspective. The objective of this thesis was to put working capital management in a wider and more academic perspective and present case studies of the value chains of industries as instrumental in theoretical contributions and practical contributions as complementary to theoretical contributions and conclusions. The principal assumption of this thesis is that selffinancing of value chains can be established through effective working capital management. Thus, the thesis introduces the financial value chain analysis method which is employed in the empirical studies. The effectiveness of working capital management of the value chains is studied through the cycle time of working capital. The financial value chain analysis method employed in this study is designed for considering value chain level phenomena. This method provides a holistic picture of the value chain through financial figures. It extends the value chain analysis to the industry level. Working capital management is studied by the cash conversion cycle that measures the length (days) of time a company has funds tied up in working capital, starting from the payment of purchases to the supplier and ending when remittance of sales is received from the customers. The working capital management practices employed in the automotive, pulp and paper and information and communication technology industries have been studied in this research project. Additionally, the Finnish pharmaceutical industry is studied to obtain a deeper understanding of the working capital management of the value chain. The results indicate that the cycle time of working capital is constant in the value chain context over time. The cash conversion cycle of automotive, pulp and paper, and ICT industries are on average 70, 60 and 40 days, respectively. The difference is mainly a consequence of the different cycle time of inventories. The financial crisis of 2008 affected the working capital management of the industries similarly. Both the cycle time of accounts receivable and accounts payable increased between 2008 and 2009. The results suggest that the companies of the automotive, pulp and paper and ICT value chains were not able to self-finance. Results do not indicate the improvement of value chains position in regard to working capital management either. The findings suggest that companies operating in the Finnish pharmaceutical industry are interested in developing their own working capital management, but collaboration with the value chain partners is not considered interesting. Competition no longer occurs between individual companies, but between value chains. Therefore the financial value chain analysis method introduced in this thesis has the potential to support value chains in improving their competitiveness.
Resumo:
Proper management of supply chains is fundamental in the overall system performance of forestbased activities. Usually, efficient management techniques rely on a decision support software, which needs to be able to generate fast and effective outputs from the set of possibilities. In order to do this, it is necessary to provide accurate models representative of the dynamic interactions of systems. Due to forest-based supply chains’ nature, event-based models are more suited to describe their behaviours. This work proposes the modelling and simulation of a forestbased supply chain, in particular the biomass supply chain, through the SimPy framework. This Python based tool allows the modelling of discrete-event systems using operations such as events, processes and resources. The developed model was used to access the impact of changes in the daily working plan in three situations. First, as a control case, the deterministic behaviour was simulated. As a second approach, a machine delay was introduced and its implications in the plan accomplishment were analysed. Finally, to better address real operating conditions, stochastic behaviours of processing and driving times were simulated. The obtained results validate the SimPy simulation environment as a framework for modelling supply chains in general and for the biomass problem in particular.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial
Resumo:
In today’s global industrial service business, markets are dynamic and finding new ways of value creation towards customers has become more and more challenging. Customer orientation is needed because of the demanding after-sales business which is both quickly changing and stochastic in nature. In after-sales business customers require fast and reliable service for their spare part needs. This thesis objective is to clarify this challenging after-sales business environment and find ways to increase customer satisfaction via balanced measurement system which will help to find possible targets to reduce order cycle times in a large metal and mineral company Outotec (Filters)’ Spare Part Supply business line. In case study, internal documents and data and numerical calculations together with qualitative interviews with different persons in key roles of Spare Part Supply organizations are used to analyze the performance of different processes from the spare parts delivery function. The chosen performance measurement tool is Balanced Scorecard which is slightly modified to suit the lead time study from customer’s perspective better. Findings show that many different processes in spare parts supply are facing different kind of challenges in achieving the lead time levels wanted and that these processes’ problems seem to accumulate. Findings also show that putting effort in supply side challenges and information flows visibility should give the best results.
Resumo:
To mitigate greenhouse gas (GHG) emissions and reduce U.S. dependence on imported oil, the United States (U.S.) is pursuing several options to create biofuels from renewable woody biomass (hereafter referred to as “biomass”). Because of the distributed nature of biomass feedstock, the cost and complexity of biomass recovery operations has significant challenges that hinder increased biomass utilization for energy production. To facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization and tapping unused forest residues, it is proposed to develop biofuel supply chain models based on optimization and simulation approaches. The biofuel supply chain is structured around four components: biofuel facility locations and sizes, biomass harvesting/forwarding, transportation, and storage. A Geographic Information System (GIS) based approach is proposed as a first step for selecting potential facility locations for biofuel production from forest biomass based on a set of evaluation criteria, such as accessibility to biomass, railway/road transportation network, water body and workforce. The development of optimization and simulation models is also proposed. The results of the models will be used to determine (1) the number, location, and size of the biofuel facilities, and (2) the amounts of biomass to be transported between the harvesting areas and the biofuel facilities over a 20-year timeframe. The multi-criteria objective is to minimize the weighted sum of the delivered feedstock cost, energy consumption, and GHG emissions simultaneously. Finally, a series of sensitivity analyses will be conducted to identify the sensitivity of the decisions, such as the optimal site selected for the biofuel facility, to changes in influential parameters, such as biomass availability and transportation fuel price. Intellectual Merit The proposed research will facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization in the renewable biofuel industry. The GIS-based facility location analysis considers a series of factors which have not been considered simultaneously in previous research. Location analysis is critical to the financial success of producing biofuel. The modeling of woody biomass supply chains using both optimization and simulation, combing with the GIS-based approach as a precursor, have not been done to date. The optimization and simulation models can help to ensure the economic and environmental viability and sustainability of the entire biofuel supply chain at both the strategic design level and the operational planning level. Broader Impacts The proposed models for biorefineries can be applied to other types of manufacturing or processing operations using biomass. This is because the biomass feedstock supply chain is similar, if not the same, for biorefineries, biomass fired or co-fired power plants, or torrefaction/pelletization operations. Additionally, the research results of this research will continue to be disseminated internationally through publications in journals, such as Biomass and Bioenergy, and Renewable Energy, and presentations at conferences, such as the 2011 Industrial Engineering Research Conference. For example, part of the research work related to biofuel facility identification has been published: Zhang, Johnson and Sutherland [2011] (see Appendix A). There will also be opportunities for the Michigan Tech campus community to learn about the research through the Sustainable Future Institute.
Resumo:
A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.
Resumo:
Truncated distributions of the exponential family have great influence in the simulation models. This paper discusses the truncated Weibull distribution specifically. The truncation of the distribution is achieved by the Maximum Likelihood Estimation method or combined with the expectation and variance expressions. After the fitting of distribution, the goodness-of-fit tests (the Chi-Square test and the Kolmogorov-Smirnov test) are executed to rule out the rejected hypotheses. Finally the distributions are integrated in various simulation models, e. g. shipment consolidation model, to compare the influence of truncated and original versions of Weibull distribution on the model.
Resumo:
Poster presented in the 24th European Symposium on Computer Aided Process Engineering (ESCAPE 24), Budapest, Hungary, June 15-18, 2014.
Resumo:
In this work, we analyze the effect of incorporating life cycle inventory (LCI) uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear programming (MILP) coupled with a two-step transformation scenario generation algorithm with the unique feature of providing scenarios where the LCI random variables are correlated and each one of them has the desired lognormal marginal distribution. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study of a petrochemical supply chain. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact, and moreover the correlation among environmental burdens provides more realistic scenarios for the decision making process.