999 resultados para Superfluid Fermi gas
Resumo:
Using the complete numerical solution of a time-dependent three-dimensional rnean-field model we study the Josephson oscillation of a superfluid Fermi gas (SFG) at zero temperature formed in a combined axially-symmetric harmonic plus one-dimensional periodic optical-lattice (OL) potentials after displacing the harmonic trap along the axial OL axis. We study the dependence of Josephson frequency on the strength of the OL potential. The Josephson frequency decreases with increasing strength as found in the experiment of Cataliotti et al. [Science 293, 843 (2001)] for a Bose-Einstein condensate and of the experiment of Pezze et al. [Phys. Rev. Lett. 93, 120401 (2004)] for an ideal Fermi gas. We demonstrate a breakdown of Josephson oscillation in the SFG for a large displacement of the harmonic trap. These features of Josephson oscillation of a SFG can be tested experimentally.
Resumo:
We introduce a quasianalytic nonlinear Schrodinger equation with beyond mean-field corrections to describe the dynamics of a zero-temperature dilute superfluid Fermi gas in the crossover from the weak-coupling Bardeen-Cooper-Schrieffer (BCS) regime, where k(F)parallel to a parallel to << 1 with a the s-wave scattering length and k(F) the Fermi momentum, through the unitarity limit k(F)a ->+/-infinity to the Bose-Einstein condensation (BEC) regime where k(F)a > 0. The energy of our model is parametrized using the known asymptotic behavior in the BCS, BEC, and the unitarity limits and is in excellent agreement with accurate Green's-function Monte Carlo calculations. The model generates good results for frequencies of collective breathing oscillations of a trapped Fermi superfluid.
Resumo:
We present a theory for a superfluid Fermi gas near the BCS-BEC crossover, including pairing fluctuation contributions to the free energy similar to that considered by Nozieres and Schmitt-Rink for the normal phase. In the strong coupling limit, our theory is able to recover the Bogoliubov theory of a weakly interacting Bose gas with a molecular scattering length very close to the known exact result. We compare our results with recent Quantum Monte Carlo simulations both for the ground state and at finite temperature. Excellent agreement is found for all interaction strengths where simulation results are available.
Resumo:
We study strongly attractive fermions in an optical lattice superimposed by a trapping potential. We calculate the densities of fermions and condensed bound molecules at zero temperature. There is a competition between dissociated fermions and molecules leading to a reduction of the density of fermions at the trap center. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Within the framework of the mean-field hydrodynamic model of a degenerate Fermi gas ( DFG), we study, by means of numerical methods and variational approximation ( VA), the formation of fundamental gap solitons ( FGSs) in a DFG ( or in a BCS superfluid generated by weak interaction between spin- up and spin- down fermions), which is trapped in a periodic optical- lattice ( OL) potential. An effectively one- dimensional ( 1D) con. guration is considered, assuming strong transverse confinement; in parallel, a proper 1D model of the DFG ( which amounts to the known quintic equation for the Tonks- Girardeau gas in the OL) is considered too. The FGSs found in the first two bandgaps of the OL- induced spectrum ( unless they are very close to edges of the gaps) feature a ( tightly bound) shape, being essentially confined to a single cell of the OL. In the second bandgap, we also find antisymmetric tightly bound subfundamental solitons ( SFSs), with zero at the midpoint. The SFSs are also confined to a single cell of the OL, but, unlike the FGSs, they are unstable. The predicted solitons, consisting of similar to 10(4) - 10(5) atoms, can be created by available experimental techniques in the DFG of Li-6 atoms.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We discuss the superfluid phase transition of a strongly interacting Fermi gas with unequal ( asymmetric) chemical potentials in two pairing hyperfine states, and map out its phase diagram near the BCS-BEC crossover. Our approach includes the fluctuation contributions of preformed Cooper pairs to the thermodynamic potential at finite temperature. We show that, below a critical difference in chemical potentials between species, a normal gas is unstable towards the formation of either a finite-momentum paired Fulde-Ferrell-Larkin-Ovchinnikov superconducting phase or a uniform superfluid, depending on the asymmetry and interaction strengths. We determine the value of critical chemical potential mismatch, and find that it is consistent with a recent measurement by Zwierlein et al. ( Science, 311 ( 2006) 492).
Resumo:
We generalize the Nozieres-Schmitt-Rink method to study the repulsive Fermi gas in the absence of molecule formation, i.e., in the so-called ``upper branch.'' We find that the system remains stable except close to resonance at sufficiently low temperatures. With increasing scattering length, the energy density of the system attains a maximum at a positive scattering length before resonance. This is shown to arise from Pauli blocking which causes the bound states of fermion pairs of different momenta to disappear at different scattering lengths. At the point of maximum energy, the compressibility of the system is substantially reduced, leading to a sizable uniform density core in a trapped gas. The change in spin susceptibility with increasing scattering length is moderate and does not indicate any magnetic instability. These features should also manifest in Fermi gases with unequal masses and/or spin populations.
Resumo:
In this paper, we investigate the initiation and subsequent evolution of Crow instability in an inhomogeneous unitary Fermi gas using zero-temperature Galilei-invariant nonlinear Schrodinger equation. Considering a cigar-shaped unitary Fermi gas, we generate the vortex-antivortex pair either by phase-imprinting or by moving a Gaussian obstacle potential. We observe that the Crow instability in a unitary Fermi gas leads to the decay of the vortex-antivortex pair into multiple vortex rings and ultimately into sound waves.
Resumo:
A Fermi gas of atoms with resonant interactions is predicted to obey universal hydrodynamics, in which the shear viscosity and other transport coefficients are universal functions of the density and temperature. At low temperatures, the viscosity has a universal quantum scale ħ n, where n is the density and ħ is Planck's constant h divided by 2π, whereas at high temperatures the natural scale is p(T)(3)/ħ(2), where p(T) is the thermal momentum. We used breathing mode damping to measure the shear viscosity at low temperature. At high temperature T, we used anisotropic expansion of the cloud to find the viscosity, which exhibits precise T(3/2) scaling. In both experiments, universal hydrodynamic equations including friction and heating were used to extract the viscosity. We estimate the ratio of the shear viscosity to the entropy density and compare it with that of a perfect fluid.
Resumo:
We investigate the behavior of a two-level atom coupled to a one-dimensional, ultracold Fermi gas. The sudden switching on of the scattering between the two entities leads to the loss of any coherence in the initial state of the impurity and we show that the exact dynamics of this process is strongly influenced by the effect of the orthogonality catastrophe within the gas. We highlight the relationship between the Loschmidt echo and the retarded Green's function-typically used to formulate the dynamical theory of the catastrophe-and demonstrate that the effect is reflected in the impurity dynamics. We show that the expected nonexponential decay of the spectral function can be observed using Ramsey interferometry on the two-level atom and comment on finite temperature effects.
Resumo:
We study the phase diagram for a dilute Bardeen-Cooper-Schrieffer superfluid Fermi-Fermi mixture (of distinct mass) at zero temperature using energy densities for the superfluid fermions in one (1D), two (2D), and three (3D) dimensions. We also derive the dynamical time-dependent nonlinear Euler-Lagrange equation satisfied by the mixture in one dimension using this energy density. We obtain the linear stability conditions for the mixture in terms of fermion densities of the components and the interspecies Fermi-Fermi interaction. In equilibrium there are two possibilities. The first is that of a uniform mixture of the two components, the second is that of two pure phases of two components without any overlap between them. In addition, a mixed and a pure phase, impossible in 1D and 2D, can be created in 3D. We also obtain the conditions under which the uniform mixture is stable from an energetic consideration. The same conditions are obtained from a modulational instability analysis of the dynamical equations in 1D. Finally, the 1D dynamical equations for the system are solved numerically and by variational approximation (VA) to study the bright solitons of the system for attractive interspecies Fermi-Fermi interaction in 1D. The VA is found to yield good agreement to the numerical result for the density profile and chemical potential of the bright solitons. The bright solitons are demonstrated to be dynamically stable. The experimental realization of these Fermi-Fermi bright solitons seems possible with present setups.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We introduce a nonlinear Schrodinger equation to describe the dynamics of a superfluid Bose gas in the crossover from the weak-coupling regime, where an(1/3)<<1 with a the interatomic s-wave scattering length and n the bosonic density, to the unitarity limit, where a ->+infinity. We call this equation the unitarity Schrodinger equation (USE). The zero-temperature bulk equation of state of this USE is parametrized by the Lee-Yang-Huang low-density expansion and Jastrow calculations at unitarity. With the help of the USE we study the profiles of quantized vortices and vortex-core radius in a uniform Bose gas. We also consider quantized vortices in a Bose gas under cylindrically symmetric harmonic confinement and study their profile and chemical potential using the USE and compare the results with those obtained from the Gross-Pitaevskii-type equations valid in the weak-coupling limit. Finally, the USE is applied to calculate the breathing modes of the confined Bose gas as a function of the scattering length.
Resumo:
The generation of Faraday waves in superfluid Fermi-Bose mixtures in elongated traps is investigated. The generation of waves is achieved by periodically changing a parameter of the system in time. Two types of modulations of parameters are considered: a variation of the fermion-boson scattering length and the boson-boson scattering length. We predict the properties of the generated Faraday patterns and study the parameter regions where they can be excited. © 2013 American Physical Society.