963 resultados para Sun corona
Resumo:
In recent years, higher cadence, higher resolution observations have revealed the quiet-Sun photosphere to be complex and rapidly evolving. Since magnetic fields anchored in the photosphere extend up into the solar corona, it is expected that the small-scale coronal magnetic field exhibits similar complexity. For the first time, the quiet-Sun coronal magnetic field is continuously evolved through a series of non-potential, quasi-static equilibria, deduced from magnetograms observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, where the photospheric boundary condition which drives the coronal evolution exactly reproduces the observed magnetograms. The build-up, storage, and dissipation of magnetic energy within the simulations is studied. We find that the free magnetic energy built up and stored within the field is sufficient to explain small-scale, impulsive events such as nanoflares. On comparing with coronal images of the same region, the energy storage and dissipation visually reproduces many of the observed features. The results indicate that the complex small-scale magnetic evolution of a large number of magnetic features is a key element in explaining the nature of the solar corona.
Resumo:
Here we investigate the contribution of surface Alfven wave damping to the heating of the solar wind in minima conditions. These waves are present in the regions of strong inhomogeneities in density or magnetic field (e.g., the border between open and closed magnetic field lines). Using a three-dimensional (3D) magnetohydrodynamics (MHD) model, we calculate the surface Alfven wave damping contribution between 1 and 4 R(circle dot) (solar radii), the region of interest for both acceleration and coronal heating. We consider waves with frequencies lower than those that are damped in the chromosphere and on the order of those dominating the heliosphere: 3 x 10(-6) to 10(-1) Hz. In the region between open and closed field lines, within a few R(circle dot) of the surface, no other major source of damping has been suggested for the low frequency waves we consider here. This work is the first to study surface Alfven waves in a 3D environment without assuming a priori a geometry of field lines or magnetic and density profiles. We demonstrate that projection effects from the plane of the sky to 3D are significant in the calculation of field line expansion. We determine that waves with frequencies >2.8 x 10(-4) Hz are damped between 1 and 4 R(circle dot). In quiet-Sun regions, surface Alfven waves are damped at further distances compared to active regions, thus carrying additional wave energy into the corona. We compare the surface Alfven wave contribution to the heating by a variable polytropic index and find it as an order of magnitude larger than needed for quiet-Sun regions. For active regions, the contribution to the heating is 20%. As it has been argued that a variable gamma acts as turbulence, our results indicate that surface Alfven wave damping is comparable to turbulence in the lower corona. This damping mechanism should be included self-consistently as an energy driver for the wind in global MHD models.
Resumo:
This article is the third in a series working towards the construction of a realistic, evolving, non-linear force-free coronal-field model for the solar magnetic carpet. Here, we present preliminary results of 3D time-dependent simulations of the small-scale coronal field of the magnetic carpet. Four simulations are considered, each with the same evolving photospheric boundary condition: a 48-hour time series of synthetic magnetograms produced from the model of Meyer et al. ( Solar Phys. 272, 29, 2011). Three simulations include a uniform, overlying coronal magnetic field of differing strength, the fourth simulation includes no overlying field. The build-up, storage, and dissipation of magnetic energy within the simulations is studied. In particular, we study their dependence upon the evolution of the photospheric magnetic field and the strength of the overlying coronal field. We also consider where energy is stored and dissipated within the coronal field. The free magnetic energy built up is found to be more than sufficient to power small-scale, transient phenomena such as nanoflares and X-ray bright points, with the bulk of the free energy found to be stored low down, between 0.5 - 0.8 Mm. The energy dissipated is currently found to be too small to account for the heating of the entire quiet-Sun corona. However, the form and location of energy-dissipation regions qualitatively agree with what is observed on small scales on the Sun. Future MHD modelling using the same synthetic magnetograms may lead to a higher energy release.
Resumo:
The modeling technique of Mackay et al. is applied to simulate the coronal magnetic field of NOAA active region AR10977 over a seven day period (2007 December 2-10). The simulation is driven with a sequence of line-of-sight component magnetograms from SOHO/MDI and evolves the coronal magnetic field though a continuous series of non-linear force-free states. Upon comparison with Hinode/XRT observations, results show that the simulation reproduces many features of the active region's evolution. In particular, it describes the formation of a flux rope across the polarity inversion line during flux cancellation. The flux rope forms at the same location as an observed X-ray sigmoid. After five days of evolution, the free magnetic energy contained within the flux rope was found to be 3.9 × 1030 erg. This value is more than sufficient to account for the B1.4 GOES flare observed from the active region on 2007 December 7. At the time of the observed eruption, the flux rope was found to contain 20% of the active region flux. We conclude that the modeling technique proposed in Mackay et al.—which directly uses observed magnetograms to energize the coronal field—is a viable method to simulate the evolution of the coronal magnetic field.
Resumo:
Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of “nominal” solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.
Resumo:
Results from the first Sun-to-Earth coupled numerical model developed at the Center for Integrated Space Weather Modeling are presented. The model simulates physical processes occurring in space spanning from the corona of the Sun to the Earth's ionosphere, and it represents the first step toward creating a physics-based numerical tool for predicting space weather conditions in the near-Earth environment. Two 6- to 7-d intervals, representing different heliospheric conditions in terms of the three-dimensional configuration of the heliospheric current sheet, are chosen for simulations. These conditions lead to drastically different responses of the simulated magnetosphere-ionosphere system, emphasizing, on the one hand, challenges one encounters in building such forecasting tools, and on the other hand, emphasizing successes that can already be achieved even at this initial stage of Sun-to-Earth modeling.
Resumo:
Measurements of the ionospheric E region during total solar eclipses in the period 1932-1999 have been used to investigate the fraction of Extreme Ultra Violet and soft X-ray radiation, phi, that is emitted from the limb corona and chromosphere. The relative apparent sizes of the Moon and the Sun are different for each eclipse, and techniques are presented which correct the measurements and, therefore, allow direct comparisons between different eclipses. The results show that the fraction of ionising radiation emitted by the limb corona has a clear solar cycle variation and that the underlying trend shows this fraction has been increasing since 1932. Data from the SOHO spacecraft are used to study the effects of short-term variability and it is shown that the observed long-term rise in phi has a negligible probability of being a chance occurrence.
Resumo:
Observations of the Sun’s corona during the space era have led to a picture of relatively constant, but cyclically varying solar output and structure. Longer-term, more indirect measurements, such as from 10Be, coupled by other albeit less reliable contemporaneous reports, however, suggest periods of significant departure from this standard. The Maunder Minimum was one such epoch where: (1) sunspots effectively disappeared for long intervals during a 70 yr period; (2) eclipse observations suggested the distinct lack of a visible K-corona but possible appearance of the F-corona; (3) reports of aurora were notably reduced; and (4) cosmic ray intensities at Earth were inferred to be substantially higher. Using a global thermodynamic MHD model, we have constructed a range of possible coronal configurations for the Maunder Minimum period and compared their predictions with these limited observational constraints. We conclude that the most likely state of the corona during—at least—the later portion of the Maunder Minimum was not merely that of the 2008/2009 solar minimum, as has been suggested recently, but rather a state devoid of any large-scale structure, driven by a photospheric field composed of only ephemeral regions, and likely substantially reduced in strength. Moreover, we suggest that the Sun evolved from a 2008/2009-like configuration at the start of the Maunder Minimum toward an ephemeral-only configuration by the end of it, supporting a prediction that we may be on the cusp of a new grand solar minimum.
Resumo:
We present a new model for the Sun's global photospheric magnetic field during a deep minimum of activity, in which no active regions emerge. The emergence and subsequent evolution of small- scale magnetic features across the full solar surface is simulated, subject to the influence of a global supergranular flow pattern. Visually, the resulting simulated magnetograms reproduce the typical structure and scale observed in quiet Sun magnetograms. Quantitatively, the simulation quickly reaches a steady state, resulting in a mean field and flux distribution that are in good agreement with those determined from observations. A potential coronal magnetic field is extrapolated from the simulated full Sun magnetograms, to consider the implications of such a quiet photospheric magnetic field on the corona and inner heliosphere. The bulk of the coronal magnetic field closes very low down, in short connections between small-scale features in the simulated magnetic network. Just 0.1% of the photospheric magnetic flux is found to be open at 2:5 Rʘ, around 10 - 100 times less than that determined for typical HMI synoptic map observations. If such conditions were to exist on the Sun, this would lead to a significantly weaker interplanetary magnetic field than is presently observed, and hence a much higher cosmic ray flux at Earth.
Resumo:
Solar radiation, especially ultraviolet A (UVA) and ultraviolet B (UVB), can cause damage to the human body, and exposure to the radiation may vary according to the geographical location, time of year and other factors. The effects of UVA and UVB radiation on organisms range from erythema formation, through tanning and reduced synthesis of macromolecules such as collagen and elastin, to carcinogenic DNA mutations. Some studies suggest that, in addition to the radiation emitted by the sun, artificial sources of radiation, such as commercial lamps, can also generate small amounts of UVA and UVB radiation. Depending on the source intensity and on the distance from the source, this radiation can be harmful to photosensitive individuals. In healthy subjects, the evidence on the danger of this radiation is still far from conclusive.
Resumo:
Sunlight exposure causes several types of injury to humans, especially on the skin; among the most common harmful effects due to ultraviolet (UV) exposure are erythema, pigmentation and lesions in DNA, which may lead to cancer. These long-term effects are minimized with the use of sunscreens, a class of cosmetic products that contains UV filters as the main component in the formulation; such molecules can absorb, reflect or diffuse UV rays, and can be used alone or as a combination to broaden the protection on different wavelengths. Currently, worldwide regulatory agencies define which ingredients and what quantities must be used in each country, and enforce companies to conduct tests that confirm the Sun Protection Factor (SPF) and the UVA (Ultraviolet A) factor. Standard SPF determination tests are currently conducted in vivo, using human subjects. In an industrial mindset, apart from economic and ethical reasons, the introduction of an in vitro method emerges as an interesting alternative by reducing risks associated to UV exposure on tests, as well as providing assertive analytical results. The present work aims to describe a novel methodology for SPF determination directly from sunscreen formulations using the previously described cosmetomics platform and mass spectrometry as the analytical methods of choice.
Resumo:
This research aimed at determining spectrophotometrically (290 to 320nm) the in vitro Sun Protection Factor (SPF) of sunscreens developed with rutin (R) or succinate rutin (SR), in association or not with UVB filter. Formulations were developed based on phosphate-base O/W emulsions, with (B) or not (A) the presence of polyacrylamide/C13-14 isoparaffin/laureth-7 (PIL), in accordance with the following associations: (a) control; (b) 1.0 % SR; (c) 0.1 % R; (d) 7.5 % ethylhexyl methoxycinnamate (EHMC); (e) 7.5 % EHMC + 0.1 % RS; (0 7.5 % EHMC + 0.1 % R. It was verified a statistical significative elevation of the SPF from 13.93 +/- 0.02 (Af) to 16.63 +/- 0.27 (Bf) and also in relation to 15.53 +/- 0.14 (Bd). According to the results, the EHMC had distinct behavior depending on the presence of bioactive substance and viscosity agent, thus, rutin obtained better profile as a SPF booster in these experimental conditions with the presence of PIL.
Resumo:
To investigate the ability of pioneer and late-successional species to adapt to a strong light environment in a reforestation area, we examined the activities of antioxidant enzymes in relation to photosystem chlorophyll a fluorescence and photosynthetic pigment concentration for eight tropical tree species grown under 100% (sun) and 10% (shade) sunlight irradiation. The pioneer (early-succession) species (PS) were Cecropia pachystachya, Croton urucurana, Croton floribundus and Schinus terebinthifolius. The non-pioneer (late succession) species (LS) were Hymenaea courbaril L var. stilbocarpa, Esenbeckia leiocarpa, Cariniana legalis and Tabebuia roseo-alba. We observed a greater decline in the ratio of variable to maximum chlorophyll a fluorescence (F(v)/F(m)) under full sunlight irradiation in the late-successional species than in the pioneer species. The LS species most sensitive to high irradiance were C. legalis and H. courbaril. In LS species, chlorophyll a, chlorophyll b and total chlorophyll concentrations were higher in the shade-grown plants than in plants that developed under full sunlight, but in the PS species C. floribundus and C. pachystachya, we did not observe significant changes in chlorophyll content when grown in the two contrasting environments. The carotenoids/total chlorophyll ratio increased significantly when plants developed under high-sunlight irradiation, but this response was not observed in the PS species S. terebinthifolius and C. pachystachya. The improved performance of the pioneer species in high sunlight was accompanied by an increase in superoxide dismutase (SOD. EC 1.15.1.1) activity, though no light-dependent increase in the activity of ascorbate peroxidase (APX. EC 1.11.1.11) was observed. The activity of catalase (CAT, EC 1.11.1.6) was reduced by high irradiation in both pioneer and late-successional species. Our results show that pioneer species perform better under high-sunlight irradiation than late-successional species, as indicated by increased SOD activity and a higher F IF,, ratio. C. legalis was the LS species most susceptible to photoinhibition under full sunlight conditions. These results suggest that pioneer plants have more potential tolerance to photo-oxidative damage than late-successional species associated with the higher SOD activity found in pioneer species. Reduced photoinhibition in pioneer species probably results from their higher photosynthetic capacities, as has been observed in a previous survey carried out by our group. (C) 2010 Elsevier B.V. All rights reserved.