785 resultados para Subjective refraction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Optometry students are taught the process of subjective refraction through lectures and laboratory based practicals before progressing to supervised clinical practice. Simulated learning environments (SLEs) are an emerging technology that are used in a range of health disciplines, however, there is limited evidence regarding the effectiveness of clinical simulators as an educational tool. Methods: Forty optometry students (20 fourth year and 20 fifth year) were assessed twice by a qualified optometrist (two examinations separated by 4-8 weeks) while completing a monocular non-cycloplegic subjective refraction on the same patient with an unknown refractive error simulated using contact lenses. Half of the students were granted access to an online SLE, The Brien Holden Vision Institute (BHVI®) Virtual Refractor, and the remaining students formed a control group. The primary outcome measures at each visit were; accuracy of the clinical refraction compared to a qualified optometrist and relative to the Optometry Council of Australia and New Zealand (OCANZ) subjective refraction examination criteria. Secondary measures of interest included descriptors of student SLE engagement, student self-reported confidence levels and correlations between performance in the simulated and real world clinical environment. Results: Eighty percent of students in the intervention group interacted with the SLE (for an average of 100 minutes); however, there was no correlation between measures of student engagement with the BHVI® Virtual Refractor and speed or accuracy of clinical subjective refractions. Fifth year students were typically more confident and refracted more accurately and quickly than fourth year students. A year group by experimental group interaction (p = 0.03) was observed for accuracy of the spherical component of refraction, and post hoc analysis revealed that less experienced students exhibited greater gains in clinical accuracy following exposure to the SLE intervention. Conclusions: Short-term exposure to a SLE can positively influence clinical subjective refraction outcomes for less experienced optometry students and may be of benefit in increasing the skills of novice refractionists to levels appropriate for commencing supervised clinical interactions.

Relevância:

70.00% 70.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE: To compare visual and refractive outcomes between self-refracting spectacles (Adaptive Eyecare, Ltd, Oxford, UK), noncycloplegic autorefraction, and cycloplegic subjective refraction. DESIGN: Cross-sectional study. PARTICIPANTS: Chinese school-children aged 12 to 17 years. METHODS: Children with uncorrected visual acuity ≤ 6/12 in either eye underwent measurement of the logarithm of the minimum angle of resolution visual acuity, habitual correction, self-refraction without cycloplegia, autorefraction with and without cycloplegia, and subjective refraction with cycloplegia. MAIN OUTCOME MEASURES: Proportion of children achieving corrected visual acuity ≥ 6/7.5 with each modality; difference in spherical equivalent refractive error between each of the modalities and cycloplegic subjective refractive error. RESULTS: Among 556 eligible children of consenting parents, 554 (99.6%) completed self-refraction (mean age, 13.8 years; 59.7% girls; 54.0% currently wearing glasses). The proportion of children with visual acuity ≥ 6/7.5 in the better eye with habitual correction, self-refraction, noncycloplegic autorefraction, and cycloplegic subjective refraction were 34.8%, 92.4%, 99.5% and 99.8%, respectively (self-refraction versus cycloplegic subjective refraction, P<0.001). The mean difference between cycloplegic subjective refraction and noncycloplegic autorefraction (which was more myopic) was significant (-0.328 diopter [D]; Wilcoxon signed-rank test P<0.001), whereas cycloplegic subjective refraction and self-refraction did not differ significantly (-0.009 D; Wilcoxon signed-rank test P = 0.33). Spherical equivalent differed by ≥ 1.0 D in either direction from cycloplegic subjective refraction more frequently among right eyes for self-refraction (11.2%) than noncycloplegic autorefraction (6.0%; P = 0.002). Self-refraction power that differed by ≥ 1.0 D from cycloplegic subjective refractive error (11.2%) was significantly associated with presenting without spectacles (P = 0.011) and with greater absolute power of both spherical (P = 0.025) and cylindrical (P = 0.022) refractive error. CONCLUSIONS: Self-refraction seems to be less prone to accommodative inaccuracy than noncycloplegic autorefraction, another modality appropriate for use in areas where access to eye care providers is limited. Visual results seem to be comparable. Greater cylindrical power is associated with less accurate results; the adjustable glasses used in this study cannot correct astigmatism. Further studies of the practical applications of this modality are warranted. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: To evaluate the accuracy of an open-field autorefractor compared with subjective refraction in pseudophakes and hence its ability to assess objective eye focus with intraocular lenses (IOLs). Methods: Objective refraction was measured at 6 m using the Shin-Nippon NVision-K 5001/Grand Seiko WR-5100K open-field autorefractor (five repeats) and by subjective refraction on 141 eyes implanted with a spherical (Softec1 n=53), aspherical (SoftecHD n=37) or accommodating (1CU n=22; Tetraflex n=29) IOL. Autorefraction was repeated 2 months later. Results: The autorefractor prescription was similar (average difference: 0.09±0.53 D; p=0.19) to that found by subjective refraction, with ~71% within ±0.50 D. The horizontal cylindrical components were similar (difference: 0.00±0.39 D; p=0.96), although the oblique (J45) autorefractor cylindrical vector was slightly more negative (by -0.06±0.25 D; p=0.06) than the subjective refraction. The results were similar for each of the IOL designs except for the spherical IOL, where the mean spherical equivalent difference between autorefraction and subjective was more hypermetropic than the Tetraflex accommodating IOL (F=2.77, p=0.04). The intrasession repeatability was

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: The aim was to evaluate the validity and repeatability of the auto-refraction function of the Nidek OPD-Scan III (Nidek Technologies, Gamagori, Japan) compared with non-cycloplegic subjective refraction. The Nidek OPD-Scan III is a new aberrometer/corneal topographer workstation based on the skiascopy principle. It combines a wavefront aberrometer, topographer, autorefractor, auto keratometer and pupillometer/pupillographer. Methods: Objective refraction results obtained using the Nidek OPD-Scan III were compared with non-cycloplegic subjective refraction for 108 eyes of 54 participants (29 female) with a mean age of 23.7±9.5 years. Intra-session and inter-session variability were assessed on 14 subjects (28 eyes). Results: The Nidek OPD-Scan III gave slightly more negative readings than results obtained by subjective refraction (Nidek mean difference -0.19±0.36 DS, p<0.01 for sphere; -0.19±0.35 DS, p<0.01 for mean spherical equivalent; -0.002±0.23 DC, p=0.91 for cylinder; -0.06±0.38 DC, p=0.30 for J0 and -0.36±0.31 DC for J45, p=0.29). Auto-refractor results for 74 per cent of spherical readings and 60 per cent of cylindrical powers were within±0.25 of subjective refraction. There was high intra-session and inter-session repeatability for all parameters; 90 per cent of inter-session repeatability results were within 0.25 D. Conclusion: The Nidek OPD-Scan III gives valid and repeatable measures of objective refraction when compared with non-cycloplegic subjective refraction. © 2013 The Authors. Clinical and Experimental Optometry © 2013 Optometrists Association Australia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose/aim Myopia incidence is increasing around the world. Myopisation is considered to be caused by a variety of factors. One consideration is whether higher-order aberrations (HOA) influence myopisation. More knowledge of optics in anisometropic eyes might give further insight into the development of refractive error. Materials and methods To analyse the possible influence of HOA on refractive error development, we compared HOA between anisometropes and isometropes. We analysed HOA up to the 4th order for both eyes of 20 anisometropes (mean age: 43 ± 17 years) and 20 isometropes (mean age: 33 ±17 years). HOA were measured with the Shack-Hartman i.Profiler (Carl Zeiss, Germany) and were recalculated for a 4 mm pupil. Mean spherical equivalent (MSE) was based on the subjective refraction. Anisometropia was defined as ≥1D interocular difference in MSE. The mean absolute differences between right and left eyes in spherical equivalent were 0.28 ± 0.21 D in the isometropic group and 2.81 ± 2.04 D in the anisometropic group. Interocular differences in HOA were compared with the interocular difference in MSE using correlations. Results For isometropes oblique trefoil, vertical coma, horizontal coma and spherical aberration showed significant correlations between the two eyes. In anisometropes all analysed higher-order aberrations correlated significantly between the two eyes except oblique secondary astigmatism and secondary astigmatism. When analysing anisometropes and isometropes separately, no significant correlations were found between interocular differences of higher-order aberrations and MSE. For isometropes and anisometropes combined, tetrafoil correlated significantly with MSE in left eyes. Conclusions The present study could not show that interocular differences of higher-order aberrations increase with increasing interocular difference in MSE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose To design and manufacture lenses to correct peripheral refraction along the horizontal meridian and to determine whether these resulted in noticeable improvements in visual performance. Method Subjective refraction of a low myope was determined on the basis of best peripheral detection acuity along the horizontal visual field out to ±30° for both horizontal and vertical gratings. Subjective refraction was compared to objective refractions using a COAS-HD aberrometer. Special lenses were made to correct peripheral refraction, based on designs optimized with and without smoothing across a 3 mm diameter square aperture. Grating detection was retested with these lenses. Contrast thresholds of 1.25’ spots were determined across the field for the conditions of best correction, on-axis correction, and the special lenses. Results The participant had high relative peripheral hyperopia, particularly in the temporal visual field (maximum 2.9 D). There were differences > 0.5D between subjective and objective refractions at a few field angles. On-axis correction reduced peripheral detection acuity and increased peripheral contrast threshold in the peripheral visual field, relative to the best correction, by up to 0.4 and 0.5 log units, respectively. The special lenses restored most of the peripheral vision, although not all at angles to ±10°, and with the lens optimized with aperture-smoothing possibly giving better vision than the lens optimized without aperture-smoothing at some angles. Conclusion It is possible to design and manufacture lenses to give near optimum peripheral visual performance to at least ±30° along one visual field meridian. The benefit of such lenses is likely to be manifest only if a subject has a considerable relative peripheral refraction, for example of the order of 2 D.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE To assess the performance of the 2Win eccentric videorefractor in relation to subjective refraction and table-mounted autorefraction. METHODS Eighty-six eyes of 86 adults (46 male and 40 female subjects) aged between 20 and 25 years were examined. Subjective refraction and autorefraction using the table-mounted Topcon KR8800 and the handheld 2Win videorefractor were carried out in a randomized fashion by three different masked examiners. Measurements were repeated about 1 week after to assess instrument reproducibility, and the intertest variability was compared between techniques. Agreement of the 2Win videorefractor with subjective refraction and autorefraction was assessed for sphere and for cylindrical vectors at 0 degrees (J0) and 45 degrees (J45). RESULTS Reproducibility coefficients for sphere values measured by subjective refraction, Topcon KR8800, and 2Win (±0.42, ±0.70, and ±1.18, respectively) were better than their corresponding J0 (±1.0, ±0.85, and ±1.66) and J45 (±1.01, ±0.87, and ±1.31) vector components. The Topcon KR8800 showed the most reproducible values for mean spherical equivalent refraction and the J0 and J45 vector components, whereas reproducibility of spherical component was best for subjective refraction. The 2Win videorefractor measurements were the least reproducible for all measures. All refractive components measured by the 2Win videorefractor did not differ significantly from those of subjective refraction, in both sessions (p > 0.05). The Topcon KR8800 autorefractometer and the 2Win videorefractor measured significantly more positive spheres and mean spherical equivalent refraction (p < 0.0001), but the J0 and J45 vector components were similar (p > 0.05), in both sessions. CONCLUSIONS The 2Win videorefractor compares well, on average, with subjective refraction. The reproducibility values for the 2Win videorefractor were considerably worse than either subjective refraction or autorefraction. The wide limits of reproducibility of the 2Win videorefractor probably limit its usefulness as a primary screening device.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose To evaluate the influence of cone location and corneal cylinder on RGP corrected visual acuities and residual astigmatism in patients with keratoconus. Methods In this prospective study, 156 eyes from 134 patients were enrolled. Complete ophthalmologic examination including manifest refraction, Best spectacle visual acuity (BSCVA), slit-lamp biomicroscopy was performed and corneal topography analysis was done. According to the cone location on the topographic map, the patients were divided into central and paracentral cone groups. Trial RGP lenses were selected based on the flat Sim K readings and a ‘three-point touch’ fitting approach was used. Over contact lens refraction was performed, residual astigmatism (RA) was measured and best-corrected RGP visual acuities (RGPVA) were recorded. Results The mean age (±SD) was 22.1 ± 5.3 years. 76 eyes (48.6%) had central and 80 eyes (51.4%) had paracentral cone. Prior to RGP lenses fitting mean (±SD) subjective refraction spherical equivalent (SRSE), subjective refraction astigmatism (SRAST) and BSCVA (logMAR) were −5.04 ± 2.27 D, −3.51 ± 1.68 D and 0.34 ± 0.14, respectively. There were statistically significant differences between central and paracentral cone groups in mean values of SRSE, SRAST, flat meridian (Sim K1), steep meridian (Sim K2), mean K and corneal cylinder (p-values < 0.05). Comparison of BSCVA to RGPVA shows that vision has improved 0.3 logMAR by RGP lenses (p < 0.0001). Mean (±SD) RA was −0.72 ± 0.39 D. There were no statistically significant differences between RGPVAs and RAs of central and paracentral cone groups (p = 0.22) and (p = 0.42), respectively. Pearson's correlation analysis shows that there is a statistically significant relationship between corneal cylinder and BSCVA and RGPVA, However, the relationship between corneal cylinder and residual astigmatism was not significant. Conclusions Cone location has no effect on the RGP corrected visual acuities and residual astigmatism in patients with keratoconus. Corneal cylinder and Sim K values influence RGP-corrected visual acuities but do not influence residual astigmatism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To determine the heritability of refractive error and the familial aggregation of myopia in an older population. METHODS: Seven hundred fifty-nine siblings (mean age, 73.4 years) in 241 families were recruited from the Salisbury Eye Evaluation (SEE) Study in eastern Maryland. Refractive error was determined by noncycloplegic subjective refraction (if presenting distance visual acuity was < or =20/40) or lensometry (if best corrected visual acuity was >20/40 with spectacles). Participants were considered plano (refractive error of zero) if uncorrected visual acuity was >20/40. Preoperative refraction from medical records was used for pseudophakic subjects. Heritability of refractive error was calculated with multivariate linear regression and was estimated as twice the residual between-sibling correlation after adjusting for age, gender, and race. Logistic regression models were used to estimate the odds ratio (OR) of myopia, given a myopic sibling relative to having a nonmyopic sibling. RESULTS: The estimated heritability of refractive error was 61% (95% confidence interval [CI]: 34%-88%) in this population. The age-, race-, and sex-adjusted ORs of myopia were 2.65 (95% CI: 1.67-4.19), 2.25 (95% CI: 1.31-3.87), 3.00 (95% CI: 1.56-5.79), and 2.98 (95% CI: 1.51-5.87) for myopia thresholds of -0.50, -1.00, -1.50, and -2.00 D, respectively. Neither race nor gender was significantly associated with an increased risk of myopia. CONCLUSIONS: Refractive error and myopia are highly heritable in this elderly population.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To model the possible impact of using average-power intraocular lenses (IOLs) and evaluate the postoperative refractive error in patients having cataract surgery in rural China.SETTING: Rural Guangdong, China.METHODS: Patients having cataract surgery by local surgeons were examined and visual function was assessed 10 to 14 months after surgery. Subjective refraction at near and distance was performed bilaterally by an ophthalmologist. Patients had a target refraction of -0.50 diopter (D) based on ocular biometry.RESULTS: Of the 313 eligible patients, 242 (77%) could be contacted and 176 (74% of contacted patients, 56% overall) were examined. Examined patients had a mean age of 69.4 +/- 10.5 years. Of the 211 operated eyes, 73.2% were within +/-1.0 D of the target refraction after surgery. The best presenting distance vision was in patients within +/-1.0 D of plano and the best presenting near vision, in those with mild myopia (<-1.0 D to > or =2.0 D) (P= .005). However, patients with hyperopia (>+1.0 D) reported significantly better adjusted visual function than those with emmetropia or myopia (<-1.0 D). When the predicted use of an average-power IOL (median +21.5 D) was modeled, predicted visual acuity was significantly reduced (P= .001); however, predicted visual function was not significantly altered (P>.3).CONCLUSIONS: Accurate selection of postoperative refractive error was achieved by local surgeons in this rural area. Based on visual function results, aiming for mild postoperative myopia may not be suitable in this setting. Implanting average-power IOLs significantly reduced postoperative presenting vision, but not visual function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: To compare outcomes between adjustable spectacles and conventional methods for refraction in young people. DESIGN: Cross sectional study. SETTING: Rural southern China. PARTICIPANTS: 648 young people aged 12-18 (mean 14.9 (SD 0.98)), with uncorrected visual acuity ≤ 6/12 in either eye. INTERVENTIONS: All participants underwent self refraction without cycloplegia (paralysis of near focusing ability with topical eye drops), automated refraction without cycloplegia, and subjective refraction by an ophthalmologist with cycloplegia. MAIN OUTCOME MEASURES: Uncorrected and corrected vision, improvement of vision (lines on a chart), and refractive error. RESULTS: Among the participants, 59% (384) were girls, 44% (288) wore spectacles, and 61% (393/648) had 2.00 dioptres or more of myopia in the right eye. All completed self refraction. The proportion with visual acuity ≥ 6/7.5 in the better eye was 5.2% (95% confidence interval 3.6% to 6.9%) for uncorrected vision, 30.2% (25.7% to 34.8%) for currently worn spectacles, 96.9% (95.5% to 98.3%) for self refraction, 98.4% (97.4% to 99.5%) for automated refraction, and 99.1% (98.3% to 99.9%) for subjective refraction (P = 0.033 for self refraction v automated refraction, P = 0.001 for self refraction v subjective refraction). Improvements over uncorrected vision in the better eye with self refraction and subjective refraction were within one line on the eye chart in 98% of participants. In logistic regression models, failure to achieve maximum recorded visual acuity of 6/7.5 in right eyes with self refraction was associated with greater absolute value of myopia/hyperopia (P<0.001), greater astigmatism (P = 0.001), and not having previously worn spectacles (P = 0.002), but not age or sex. Significant inaccuracies in power (≥ 1.00 dioptre) were less common in right eyes with self refraction than with automated refraction (5% v 11%, P<0.001). CONCLUSIONS: Though visual acuity was slightly worse with self refraction than automated or subjective refraction, acuity was excellent in nearly all these young people with inadequately corrected refractive error at baseline. Inaccurate power was less common with self refraction than automated refraction. Self refraction could decrease the requirement for scarce trained personnel, expensive devices, and cycloplegia in children's vision programmes in rural China.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background. Over 39.9% of the adult population forty or older in the United States has refractive error, little is known about the etiology of this condition and associated risk factors and their entailed mechanism due to the paucity of data regarding the changes of refractive error for the adult population over time.^ Aim. To evaluate risk factors over a long term, 5-year period, in refractive error changes among persons 43 or older by testing the hypothesis that age, gender, systemic diseases, nuclear sclerosis and baseline refractive errors are all significantly associated with refractive errors changes in patients at a Dallas, Texas private optometric office.^ Methods. A retrospective chart review of subjective refraction, eye health, and self-report health history was done on patients at a private optometric office who were 43 or older in 2000 who had eye examinations both in 2000 and 2005. Aphakic and pseudophakic eyes were excluded as well as eyes with best corrected Snellen visual acuity of 20/40 and worse. After exclusions, refraction was obtained on 114 right eyes and 114 left eyes. Spherical equivalent (sum of sphere + ½ cylinder) was used as the measure of refractive error.^ Results. Similar changes in refractive error were observed for the two eyes. The 5-year change in spherical power was in a hyperopic direction for younger age groups and in a myopic direction for older subjects, P<0.0001. The gender-adjusted mean change in refractive error in right eyes of persons aged 43 to 54, 55 to 64, 65 to 74, and 75 or older at baseline was +0.43D, +0.46 D, -0.09 D, and -0.23D, respectively. Refractive change was strongly related to baseline nuclear cataract severity; grades 4 to 5 were associated with a myopic shift (-0.38 D, P< 0.0001). The mean age-adjusted change in refraction was +0.27 D for hyperopic eyes, +0.56 D for emmetropic eyes, and +0.26 D for myopic eyes.^ Conclusions. This report has documented refractive error changes in an older population and confirmed reported trends of a hyperopic shift before age 65 and a myopic shift thereafter associated with the development of nuclear cataract.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose. A clinical evaluation of the Shin-Nippon NVision-K 5001 (also branded as the Grand Seiko WR-5100K) autorefractor (Japan) was performed to examine validity and repeatability compared with subjective refraction and Javal-Schiotz keratometry. Methods. Measurements of refractive error were performed on 198 eyes of 99 subjects (aged 23.2 ± 7.4 years) subjectively (noncycloplegic) by one masked optometrist and objectively with the NVision-K autorefractor by a second optometrist. Keratometry measurements using the NVision-K were compared with the Javal-Schiotz keratometer. Intrasession repeatability of the NVision-K was also assessed on all 99 subjects together with intersession repeatability on a separate occasion separated by 7 to 14 days. Results. Refractive error as measured by the NVision-K was found to be similar (p = 0.67) to subjective refraction (difference, 0.14 ± 0.35 D). It was both accurate and repeatable over a wide prescription range (-8.25 to +7.25 D). Keratometry as measured by the NVision-K was found to be similar (p > 0.50) to the Javal-Schiotz technique in both the horizontal and vertical meridians (horizontal: difference, 0.02 ± 0.09 mm; vertical: difference, 0.01 ± 0.14 mm). There was minimal bias, and the results were repeatable (horizontal: intersession difference, 0.00 ± 0.09 mm; vertical: intersession difference, -0.01 ± 0.12 mm). Conclusion. The open-view arrangement of the Shin-Nippon NVision-K 5001 facilitates the measurement of static refractive error and the accommodative response to real-world stimuli. Coupled with its accuracy, repeatability, and capability to measure corneal curvature, it is a valuable addition to objective instrumentation currently available to the optometrist and researcher.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: A clinical evaluation of the Grand Seiko Auto Ref/Keratometer WAM-5500 (Japan) was performed to evaluate validity and repeatability compared with non-cycloplegic subjective refraction and Javal–Schiotz keratometry. An investigation into the dynamic recording capabilities of the instrument was also conducted. Methods: Refractive error measurements were obtained from 150 eyes of 75 subjects (aged 25.12 ± 9.03 years), subjectively by a masked optometrist, and objectively with the WAM-5500 at a second session. Keratometry measurements from the WAM-5500 were compared to Javal–Schiotz readings. Intratest variability was examined on all subjects, whilst intertest variability was assessed on a subgroup of 44 eyes 7–14 days after the initial objective measures. The accuracy of the dynamic recording mode of the instrument and its tolerance to longitudinal movement was evaluated using a model eye. An additional evaluation of the dynamic mode was performed using a human eye in relaxed and accommodated states. Results: Refractive error determined by the WAM-5500 was found to be very similar (p = 0.77) to subjective refraction (difference, -0.01 ± 0.38 D). The instrument was accurate and reliable over a wide range of refractive errors (-6.38 to +4.88 D). WAM-5500 keratometry values were steeper by approximately 0.05 mm in both the vertical and horizontal meridians. High intertest repeatability was demonstrated for all parameters measured: for sphere, cylinder power and MSE, over 90% of retest values fell within ±0.50 D of initial testing. In dynamic (high-speed) mode, the root-mean-square of the fluctuations was 0.005 ± 0.0005 D and a high level of recording accuracy was maintained when the measurement ring was significantly blurred by longitudinal movement of the instrument head. Conclusion: The WAM-5500 Auto Ref/Keratometer represents a reliable and valid objective refraction tool for general optometric practice, with important additional features allowing pupil size determination and easy conversion into high-speed mode, increasing its usefulness post-surgically following accommodating intra-ocular lens implantation, and as a research tool in the study of accommodation.