995 resultados para Structure aware
Resumo:
Le présent mémoire comprend un survol des principales méthodes de rendu en demi-tons, de l’analog screening à la recherche binaire directe en passant par l’ordered dither, avec une attention particulière pour la diffusion d’erreur. Ces méthodes seront comparées dans la perspective moderne de la sensibilité à la structure. Une nouvelle méthode de rendu en demi-tons par diffusion d’erreur est présentée et soumise à diverses évaluations. La méthode proposée se veut originale, simple, autant à même de préserver le caractère structurel des images que la méthode à l’état de l’art, et plus rapide que cette dernière par deux à trois ordres de magnitude. D’abord, l’image est décomposée en fréquences locales caractéristiques. Puis, le comportement de base de la méthode proposée est donné. Ensuite, un ensemble minutieusement choisi de paramètres permet de modifier ce comportement de façon à épouser les différents caractères fréquentiels locaux. Finalement, une calibration détermine les bons paramètres à associer à chaque fréquence possible. Une fois l’algorithme assemblé, toute image peut être traitée très rapidement : chaque pixel est attaché à une fréquence propre, cette fréquence sert d’indice pour la table de calibration, les paramètres de diffusion appropriés sont récupérés, et la couleur de sortie déterminée pour le pixel contribue en espérance à souligner la structure dont il fait partie.
Resumo:
Dans ce mémoire nous allons présenter une méthode de diffusion d’erreur originale qui peut reconstruire des images en demi-ton qui plaisent à l’œil. Cette méthode préserve des détails fins et des structures visuellement identifiables présentes dans l’image originale. Nous allons tout d’abord présenter et analyser quelques travaux précédents afin de montrer certains problèmes principaux du rendu en demi-ton, et nous allons expliquer pourquoi nous avons décidé d’utiliser un algorithme de diffusion d’erreur pour résoudre ces problèmes. Puis nous allons présenter la méthode proposée qui est conceptuellement simple et efficace. L’image originale est analysée, et son contenu fréquentiel est détecté. Les composantes principales du contenu fréquentiel (la fréquence, l’orientation et le contraste) sont utilisées comme des indices dans un tableau de recherche afin de modifier la méthode de diffusion d’erreur standard. Le tableau de recherche est établi dans un étape de pré-calcul et la modification est composée par la modulation de seuil et la variation des coefficients de diffusion. Ensuite le système en entier est calibré de façon à ce que ces images reconstruites soient visuellement proches d’images originales (des aplats d’intensité constante, des aplats contenant des ondes sinusoïdales avec des fréquences, des orientations et des constrastes différents). Finalement nous allons comparer et analyser des résultats obtenus par la méthode proposée et des travaux précédents, et démontrer que la méthode proposée est capable de reconstruire des images en demi-ton de haute qualité (qui préservent des structures) avec un traitement de temps très faible.
Resumo:
Empresas de diferentes setores, dentro da nova estrutura competitiva, cientes da importância de satisfazer as necessidades dos consumidores, vêm provocando mudanças nos hábitos e costumes da população. Novos alimentos e novas formas de distribuição têm sido introduzidos, acompanhados de agressivas campanhas publicitárias. O setor de café, confiante na sua tradição, não acompanhou o ritmo de modernização e de marketing do setor de bebidas, tendo como conseqüência uma significativa perda de participação no mercado e redução no consumo. Este trabalho tem como objetivo conhecer o consumidor jovem de café no Brasil e sugerir estratégias mercadológicas que possam estimulá-lo a consumir mais o produto. Através da técnica de análise de grupos foram realizados estudos qualitativos na cidade "de São "Paulo e estudos quantitativos na cidade. de Belo Horizonte. Analisados os resultados, e identificado o significado do café para este público jovem, foram sugeridas estratégias genéricas que contribuam para o aumento do consumo de café no mercado interno. Os resultados mostram que predomina, entre os jovens universitários, uma imagem negativa em relação ao café. Muito associado ao cigarro e ao vicio, 54% dos entrevistados não têm o hábito de tomar café, além de associar a imagem do café a uma pessoa adulta, que trabalha muito, estressada e cheia de responsabilidades. Quem toma aprendeu com a família, por um hábito, ou no trabalho. Como aspectos positivos consideram o café como estimulante e muito associado a um intervalo, descanso e relaxamento. Consideram que o café ainda mantém sua postura tradicional, não é um produto prático e adequado ao jovem e as propagandas não falam com o jovem. Estratégias de marketing elaboradas com vistas ao futuro consumidor de café devem descobrir os valores que norteiam os interesses dos jovens de hoje para construir produtos, embalagens, formas de consumo e de comunicação que façam sentido em seu mundo. Pois esse mundo é diferente daquele onde o café tem ou teve um lugar de honra: o lar brasileiro. Da forma como vem sendo percebido hoje pelos jovens, constata-se que é preciso mudar se quiser permanecer.
Resumo:
CMPs enable simultaneous execution of multiple applications on the same platforms that share cache resources. Diversity in the cache access patterns of these simultaneously executing applications can potentially trigger inter-application interference, leading to cache pollution. Whereas a large cache can ameliorate this problem, the issues of larger power consumption with increasing cache size, amplified at sub-100nm technologies, makes this solution prohibitive. In this paper in order to address the issues relating to power-aware performance of caches, we propose a caching structure that addresses the following: 1. Definition of application-specific cache partitions as an aggregation of caching units (molecules). The parameters of each molecule namely size, associativity and line size are chosen so that the power consumed by it and access time are optimal for the given technology. 2. Application-Specific resizing of cache partitions with variable and adaptive associativity per cache line, way size and variable line size. 3. A replacement policy that is transparent to the partition in terms of size, heterogeneity in associativity and line size. Through simulation studies we establish the superiority of molecular cache (caches built as aggregations of molecules) that offers a 29% power advantage over that of an equivalently performing traditional cache.
Resumo:
The problem of delay-constrained, energy-efficient broadcast in cooperative wireless networks is NP-complete. While centralised setting allows some heuristic solutions, designing heuristics in distributed implementation poses significant challenges. This is more so in wireless sensor networks (WSNs) where nodes are deployed randomly and topology changes dynamically due to node failure/join and environment conditions. This paper demonstrates that careful design of network infrastructure can achieve guaranteed delay bounds and energy-efficiency, and even meet quality of service requirements during broadcast. The paper makes three prime contributions. First, we present an optimal lower bound on energy consumption for broadcast that is tighter than what has been previously proposed. Next, iSteiner, a lightweight, distributed and deterministic algorithm for creation of network infrastructure is discussed. iPercolate is the algorithm that exploits this structure to cooperatively broadcast information with guaranteed delivery and delay bounds, while allowing real-time traffic to pass undisturbed.
Resumo:
In the past many different methodologies have been devised to support software development and different sets of methodologies have been developed to support the analysis of software artefacts. We have identified this mismatch as one of the causes of the poor reliability of embedded systems software. The issue with software development styles is that they are ``analysis-agnostic.'' They do not try to structure the code in a way that lends itself to analysis. The analysis is usually applied post-mortem after the software was developed and it requires a large amount of effort. The issue with software analysis methodologies is that they do not exploit available information about the system being analyzed.
In this thesis we address the above issues by developing a new methodology, called "analysis-aware" design, that links software development styles with the capabilities of analysis tools. This methodology forms the basis of a framework for interactive software development. The framework consists of an executable specification language and a set of analysis tools based on static analysis, testing, and model checking. The language enforces an analysis-friendly code structure and offers primitives that allow users to implement their own testers and model checkers directly in the language. We introduce a new approach to static analysis that takes advantage of the capabilities of a rule-based engine. We have applied the analysis-aware methodology to the development of a smart home application.
Using location-aware technology for learning Geography in a real digital space outside the classroom
Resumo:
The use of new mobile technologies is still in its infancy in many secondary schools and there is limited evidence of the educational and pedagogical benefits on pupils’ learning in the formal school context. This qualitative study focuses on the use of handheld devices to teach a topic in geography to an examination class. Action research combined with pupil observations and focus group interviews are used to capture the pupils’ experiences of using mediascapes. Activity Theory is used as a lens to structure the analysis of the data and to report on the cognitive and affective impact of m-learning on pupils’ academic performance in the topic. Increased attainment and the development of wider skills for lifelong learning were identified in the study. The adaptability of the majority of pupils to the technology resulted in increased levels of willingness to learn in this novel context.
Resumo:
The increased capabilities (e.g., processing, storage) of portable devices along with the constant need of users to retrieve and send information have introduced a new form of communication. Users can seamlessly exchange data by means of opportunistic contacts among them and this is what characterizes the opportunistic networks (OppNets). OppNets allow users to communicate even when an end-to-end path may not exist between them. Since 2007, there has been a trend to improve the exchange of data by considering social similarity metrics. Social relationships, shared interests, and popularity are examples of such metrics that have been employed successfully: as users interact based on relationships and interests, this information can be used to decide on the best next forwarders of information. This Thesis work combines the features of today's devices found in the regular urban environment with the current social-awareness trend in the context of opportunistic routing. To achieve this goal, this work was divided into di erent tasks that map to a set of speci c objectives, leading to the following contributions: i) an up-to-date opportunistic routing taxonomy; ii) a universal evaluation framework that aids in devising and testing new routing proposals; iii) three social-aware utility functions that consider the dynamic user behavior and can be easily incorporated to other routing proposals; iv) two opportunistic routing proposals based on the users' daily routines and on the content traversing the network and interest of users in such content; and v) a structure analysis of the social-based network formed based on the approaches devised in this work.
Resumo:
In recent years, progress in the area of mobile telecommunications has changed our way of life, in the private as well as the business domain. Mobile and wireless networks have ever increasing bit rates, mobile network operators provide more and more services, and at the same time costs for the usage of mobile services and bit rates are decreasing. However, mobile services today still lack functions that seamlessly integrate into users’ everyday life. That is, service attributes such as context-awareness and personalisation are often either proprietary, limited or not available at all. In order to overcome this deficiency, telecommunications companies are heavily engaged in the research and development of service platforms for networks beyond 3G for the provisioning of innovative mobile services. These service platforms are to support such service attributes. Service platforms are to provide basic service-independent functions such as billing, identity management, context management, user profile management, etc. Instead of developing own solutions, developers of end-user services such as innovative messaging services or location-based services can utilise the platform-side functions for their own purposes. In doing so, the platform-side support for such functions takes away complexity, development time and development costs from service developers. Context-awareness and personalisation are two of the most important aspects of service platforms in telecommunications environments. The combination of context-awareness and personalisation features can also be described as situation-dependent personalisation of services. The support for this feature requires several processing steps. The focus of this doctoral thesis is on the processing step, in which the user’s current context is matched against situation-dependent user preferences to find the matching user preferences for the current user’s situation. However, to achieve this, a user profile management system and corresponding functionality is required. These parts are also covered by this thesis. Altogether, this thesis provides the following contributions: The first part of the contribution is mainly architecture-oriented. First and foremost, we provide a user profile management system that addresses the specific requirements of service platforms in telecommunications environments. In particular, the user profile management system has to deal with situation-specific user preferences and with user information for various services. In order to structure the user information, we also propose a user profile structure and the corresponding user profile ontology as part of an ontology infrastructure in a service platform. The second part of the contribution is the selection mechanism for finding matching situation-dependent user preferences for the personalisation of services. This functionality is provided as a sub-module of the user profile management system. Contrary to existing solutions, our selection mechanism is based on ontology reasoning. This mechanism is evaluated in terms of runtime performance and in terms of supported functionality compared to other approaches. The results of the evaluation show the benefits and the drawbacks of ontology modelling and ontology reasoning in practical applications.
Resumo:
Learning contents adaptation has been a subject of interest in the research area of the adaptive hypermedia systems. Defining which variables and which standards can be considered to model adaptive content delivery processes is one of the main challenges in pedagogical design over e-learning environments. In this paper some specifications, architectures and technologies that can be used in contents adaptation processes considering characteristics of the context are described and a proposal to integrate some of these characteristics in the design of units of learning using adaptation conditions in a structure of IMS-Learning Design (IMS-LD) is presented. The key contribution of this work is the generation of instructional designs considering the context, which can be used in Learning Management Systems (LMSs) and diverse mobile devices
Resumo:
Thermal effects are rapidly gaining importance in nanometer heterogeneous integrated systems. Increased power density, coupled with spatio-temporal variability of chip workload, cause lateral and vertical temperature non-uniformities (variations) in the chip structure. The assumption of an uniform temperature for a large circuit leads to inaccurate determination of key design parameters. To improve design quality, we need precise estimation of temperature at detailed spatial resolution which is very computationally intensive. Consequently, thermal analysis of the designs needs to be done at multiple levels of granularity. To further investigate the flow of chip/package thermal analysis we exploit the Intel Single Chip Cloud Computer (SCC) and propose a methodology for calibration of SCC on-die temperature sensors. We also develop an infrastructure for online monitoring of SCC temperature sensor readings and SCC power consumption. Having the thermal simulation tool in hand, we propose MiMAPT, an approach for analyzing delay, power and temperature in digital integrated circuits. MiMAPT integrates seamlessly into industrial Front-end and Back-end chip design flows. It accounts for temperature non-uniformities and self-heating while performing analysis. Furthermore, we extend the temperature variation aware analysis of designs to 3D MPSoCs with Wide-I/O DRAM. We improve the DRAM refresh power by considering the lateral and vertical temperature variations in the 3D structure and adapting the per-DRAM-bank refresh period accordingly. We develop an advanced virtual platform which models the performance, power, and thermal behavior of a 3D-integrated MPSoC with Wide-I/O DRAMs in detail. Moving towards real-world multi-core heterogeneous SoC designs, a reconfigurable heterogeneous platform (ZYNQ) is exploited to further study the performance and energy efficiency of various CPU-accelerator data sharing methods in heterogeneous hardware architectures. A complete hardware accelerator featuring clusters of OpenRISC CPUs, with dynamic address remapping capability is built and verified on a real hardware.
Resumo:
In the present work, a detailed analysis of a Mediterranean TLC occurred in January 2014 has been conducted. The author is not aware of other studies regarding this particular event at the publication of this thesis. In order to outline the cyclone evolution, observational data, including weather-stations data, satellite data, radar data and photographic evidence, were collected at first. After having identified the cyclone path and its general features, the GLOBO, BOLAM and MOLOCH NWP models, developed at ISAC-CNR (Bologna), were used to simulate the phenomenon. Particular attention was paid on the Mediterranean phase as well as on the Atlantic phase, since the cyclone showed a well defined precursor up to 3 days before the minimum formation in the Alboran Sea. The Mediterranean phase has been studied using different combinations of GLOBO, BOLAM and MOLOCH models, so as to evaluate the best model chain to simulate this kind of phenomena. The BOLAM and MOLOCH models showed the best performance, by adjusting the path erroneously deviated in the National Centre for Environmental Prediction (NCEP) and ECMWF operational models. The analysis of the cyclone thermal phase shown the presence of a deep-warm core structure in many cases, thus confirming the tropical-like nature of the system. Furthermore, the results showed high sensitivity to initial conditions in the whole lifetime of the cyclone, while the Sea Surface Temperature (SST) modification leads only to small changes in the Adriatic phase. The Atlantic phase has been studied using GLOBO and BOLAM model and with the aid of the same methodology already developed. After tracing the precursor, in the form of a low-pressure system, from the American East Coast to Spain, the thermal phase analysis was conducted. The parameters obtained showed evidence of a deep-cold core asymmetric structure during the whole Atlantic phase, while the first contact with the Mediterranean Sea caused a sudden transition to a shallow-warm core structure. The examination of Potential Vorticity (PV) 3-dimensional structure revealed the presence of a PV streamer that individually formed over Greenland and eventually interacted with the low-pressure system over the Spanish coast, favouring the first phase of the cyclone baroclinic intensification. Finally, the development of an automated system that tracks and studies the thermal phase of Mediterranean cyclones has been encouraged. This could lead to the forecast of potential tropical transition, against with a minimum computational investment.
Resumo:
Non-linear image registration is an important tool in many areas of image analysis. For instance, in morphometric studies of a population of brains, free-form deformations between images are analyzed to describe the structural anatomical variability. Such a simple deformation model is justified by the absence of an easy expressible prior about the shape changes. Applying the same algorithms used in brain imaging to orthopedic images might not be optimal due to the difference in the underlying prior on the inter-subject deformations. In particular, using an un-informed deformation prior often leads to local minima far from the expected solution. To improve robustness and promote anatomically meaningful deformations, we propose a locally affine and geometry-aware registration algorithm that automatically adapts to the data. We build upon the log-domain demons algorithm and introduce a new type of OBBTree-based regularization in the registration with a natural multiscale structure. The regularization model is composed of a hierarchy of locally affine transformations via their logarithms. Experiments on mandibles show improved accuracy and robustness when used to initialize the demons, and even similar performance by direct comparison to the demons, with a significantly lower degree of freedom. This closes the gap between polyaffine and non-rigid registration and opens new ways to statistically analyze the registration results.
Resumo:
A substantial amount of information on the Internet is present in the form of text. The value of this semi-structured and unstructured data has been widely acknowledged, with consequent scientific and commercial exploitation. The ever-increasing data production, however, pushes data analytic platforms to their limit. This thesis proposes techniques for more efficient textual big data analysis suitable for the Hadoop analytic platform. This research explores the direct processing of compressed textual data. The focus is on developing novel compression methods with a number of desirable properties to support text-based big data analysis in distributed environments. The novel contributions of this work include the following. Firstly, a Content-aware Partial Compression (CaPC) scheme is developed. CaPC makes a distinction between informational and functional content in which only the informational content is compressed. Thus, the compressed data is made transparent to existing software libraries which often rely on functional content to work. Secondly, a context-free bit-oriented compression scheme (Approximated Huffman Compression) based on the Huffman algorithm is developed. This uses a hybrid data structure that allows pattern searching in compressed data in linear time. Thirdly, several modern compression schemes have been extended so that the compressed data can be safely split with respect to logical data records in distributed file systems. Furthermore, an innovative two layer compression architecture is used, in which each compression layer is appropriate for the corresponding stage of data processing. Peripheral libraries are developed that seamlessly link the proposed compression schemes to existing analytic platforms and computational frameworks, and also make the use of the compressed data transparent to developers. The compression schemes have been evaluated for a number of standard MapReduce analysis tasks using a collection of real-world datasets. In comparison with existing solutions, they have shown substantial improvement in performance and significant reduction in system resource requirements.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08