1000 resultados para Structural analogue
Resumo:
In humans, hydromorphone (HMOR) is metabolised principally by conjugation with glucuronic acid to form hydromorphone-3-glucuronide (H3G), a close structural analogue of morphine-3-glucuronide (M3G), the major metabolite of morphine. In a previous study we described the biochemical synthesis of H3G together with a preliminary evaluation of its pharmacology which revealed that it is a neuro-excitant in rats in a manner analogous to M3G. Thus the aims of the current study were to quantify the neuro-excitatory behaviours evoked by intracerebroventricular (icv) H3G in the rat and to define its potency relative to M3G. Groups of adult male Sprague-Dawley rats received icy injections (1 muL) of H3G (1 - 3 mug), M3G (2 - 7 mug) or vehicle via a stainless steel guide cannula that had been implanted stereotaxically seven days prior to drug administration. Behavioural excitation was monitored by scoring fifteen different behaviours (myoclonic jerks, chewing, wet-dog-shakes, rearing, tonic-clonic-convulsions, explosive motor behaviour, grooming, exploring, general activity, eating, staring, ataxia, righting reflex, body posture, touch evoked agitation) immediately prior to icy injection and at the following post-dosing times: 5, 15, 25, 35, 50, 65 and 80 min. H3G produced dose-dependent behavioural excitation in a manner analogous to that reported previously for M3G by our laboratory and reproduced herein. H3G was found to be approximately 2.5-fold more potent than M3G, such that the mean (+/- S.D.) ED50 values were 2.3 (+/- 0.1) mug and 6.1 (+/- 0.6) mug respectively. Thus, our data clearly imply that if H3G crosses the BBB with equivalent efficiency to M3G, then the myoclonus, allodynia and seizures observed in some patients dosed chronically with large systemic doses of HMOR, are almost certainly due to the accumulation of sufficient H3G in the central nervous system, to evoke behavioural excitation. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Amiodarone has been used as an anti-arrhythmic drug since the 1970s and has an established role in the treatment of ventricular tachyarrhythmias. Although considered to be a class III anti-arrhythmic, amiodarone also has class I, II and IV actions, which gives it a unique pharmacological and anti-arrhythmic profile. Amiodarone is a structural analogue of thyroid hormone and some of its anti-arrhythmic properties and toxicity may be attributable to interactions with nuclear thyroid hormone receptors. The lipid solubility of amiodarone gives it an exceptionally long half-life. Oral amiodarone takes days to work in ventricular tachyarrhythmias, but iv. amiodarone has immediate effect and can be used in life threatening ventricular arrhythmias. Intravenous amiodarone administered after out-of-hospital cardiac arrest due to ventricular fibrillation improves survival to hospital admission. Many survivors of myocardial infarction (MI) die during the subsequent year, probably due to ventricular arrhythmia. Amiodarone reduces sudden death after MI and this benefit is predominantly observed in patients with preserved cardiac function. Sudden cardiac death, predominantly due to ventricular arrhythmias, is also commonly seen in patients with heart failure. The Grupo de Estudio de la Sobrevida en lsuficiencia Cardiaca en Argentina (GESICA) and Estudio Piloto Argentino de Muerte Subita y Amiodarona (EPAMSA) trials showed survival benefit of amiodarone in heart failure, whereas Congestive Heart Failure-Survival Trial of Anti-arrhythmic Therapy (CHF-STAT) did not. Subsequent meta-analysis established a survival benefit of amiodarone in heart failure. Implanted Cardioverter Defibrillators (ICDs) also give survival benefit to patients at risk of sudden death. In patients with a history of ventricular fibrillation or haemodynamically-compromising ventricular tachycardia, ICDs have been shown to be superior to anti-arrhythmic drugs, principally amiodarone. Further analysis has been undertaken to ascertain which patients are most likely to benefit from ICDs, as these are more expensive than treatment with amiodarone. Patients with severely depressed ejection fractions should be the first to be considered for ICDs. A new indication for amiodarone is atrial fibrillation or flutter. Amiodarone is effective in chronic and recent onset atrial fibrillation and orally or iv. for atrial fibrillation after heart surgery. In atrial fibrillation amiodarone is more than or equi-effective with flecainide, quinidine, racemic sotalol, propafenone and diltiazem and therefore should be considered for first line therapy. Amiodarone is also safe and effective in controlling refractory tachyarrhythmias in infants and is safe after cardiac surgery.
Resumo:
Among organic materials, spirobifluorene derivatives represent a very attractive class of materials for electronic devices. These compounds have high melting points, glass transitions temperatures and morphological stability, which makes these materials suitable for organic electronic applications. In addition, some of spirobifluorenes can form porous supramolecular associations with significant volumes available for the inclusion of guests. These molecular associations based on the spirobifluorenes are noteworthy because they are purely molecular analogues of zeolites and other microporous solids, with potential applications in separation, catalysis, sensing and other areas.
Resumo:
The morphological and functional unit of all the living organisms is the cell. The transmembrane proteins, localized in the plasma membrane of cells, play a key role in the survival of the cells themselves. These proteins perform a variety of different tasks, for example the control of the homeostasis. In order to control the homeostasis, these proteins have to regulate the concentration of chemical elements, like ions, inside and outside the cell. These regulations are fundamental for the survival of the cell and to understand them we need to understand how transmembrane proteins work. Two of the most important categories of transmembrane proteins are ion channels and transporter proteins. The ion channels have been depth studied at the single molecule level since late 1970s with the development of patch-clamp technique. It is not possible to apply this technique to study the transporter proteins so a new technique is under development in order to investigate the behavior of transporter proteins at the single molecule level. This thesis describes the development of a nanoscale single liposome assay for functional studies of transporter proteins based on quantitative fluorescence microscopy in a highly-parallel manner and in real time. The transporter of interest is the prokaryotic transporter Listeria Monocytogenes Ca2+-ATPase1 (LMCA1), a structural analogue of the eukaryotic calcium pumps SERCA and PMCA. This technique will allow the characterization of LMCA1 functionality at the single molecule level. Three systematically characterized fluorescent sensors were tested at the single liposome scale in order to investigate if their properties are suitable to study the function of the transporter of interest. Further studies will be needed in order to characterize the selected calcium sensor and pH sensor both implemented together in single liposomes and in presence of the reconstituted protein LMCA1.
Resumo:
Histamine H2 receptors transfected in Chinese hamster ovary (CHO) cells are time- and dose-dependently upregulated upon exposure to the H2 antagonists cimetidine and ranitidine. This effect appears to be H2 receptor-mediated as no change in receptor density was observed after H1 or H3 antagonist treatment or after incubation with the structural analogue of cimetidine, VUF 8299, which has no H2 antagonistic effects. By using transfected CHO cells expressing different densities of wild-type H2 receptors or an uncoupled H2Leu124Ala receptor, the histamine H2 receptor was found to display considerable agonist-independent H2 receptor activity. Cimetidine and ranitidine, which both induce H2 receptor upregulation, actually functioned as inverse agonists in those cell lines displaying spontaneous agonist-independent H2 receptor activity. Burimamide, on the other hand, was shown to act as a neutral antagonist and did as expected not induce H2 receptor upregulation after long-term exposure. The displayed inverse agonism of H2 antagonists appears to be a mechanistic basis for the observed H2 antagonist-induced H2 receptor upregulation in transfected CHO cells. These observations shed new light on the pharmacological classification of the H2 antagonists and may offer a plausible explanation for the observed development of tolerance after prolonged clinical use.
Resumo:
Temozolomide is an imidazotetrazinone with antineoplastic properties. It is structurally related to dacarbazine. Temozolomide was not metabolized in vitro by liver fractions. Chemical decomposition appears to play an important r^ole in its in vitro and in vivo disposition. In contrast, 3-methylbenzotriazinone, a structural analogue, was metabolized by hepatic microsomes to afford benzotriazinone and a hydrophilic metabolite. The cytotoxicity of temozolomide, dacarbazine, 5-[3-(hydroxy-methyl-3-methyl-triazen-1-yl]imidazole-5-carboxamide (HMMTIC) and 3-monomethyl-(triazen-1-yl)imidazole-4-carboxamide (MTIC) were investigated in TLX5 murine lymphoma cells. Unlike dacarbazine, which was not toxic, MTIC, HMMTIC and temozolomide were cytotoxic in the absence of microsomes. Decarbazine was only cytotoxic in the presence of microsomes. The formation of MTIC from dacarbazine, HMMTIC and temozolomide was determined by reversed phase high performance liquid chromatography in mixtures incubated under conditions identical to those described before. MTIC was generated chemically from temozolomide and HMMTIC metabolically from dacarbazine. Using [14C]temozolomide, it was found that, in mice, the major route of excretion of the drug is via the kidneys. An acidic metabolite (metabolite I) was found in the urine of mice which had received temozolomide but its identity has not been established. 1H NMR, UV and chemical analyses revealed that Metabolite I possesses an intact NNN linkage and the site of metabolism is at the N3 methyl group. A further acidic metabolite (metabolite II) was found in the urine of patients. Metabolite II was unambiguously identified as the 8-carboxylic acid derivative of temozolomide. In vitro cytotoxicity assay showed that ony metabolite II is cytotoxic but not metabolite I. Pharmacokinetic studies of temozolomide and MTIC in vivo were performed on mice bearing TLX5 tumour. Temozolomide was eliminated from the plasma monophasically with a t1/2 of 0.7hr. MTIC was identified as a product of decomposition. MTIC was eliminated rapidly with a t1/2 of 2min. Though temozolomide shares many biochemical and biological similarities with clinically used dacarbazine, the results obtained in this study show that it differs markedly in its pharmacokinetic properties from dacarbazine, as temozolomide produced relatively sustained plasma levels which were reflected by drug concentrations in the tumour.
Resumo:
Antisense oligonucleotides deserve great attention as potential drug candidates for the treatment of genetic disorders. For example, muscle dystrophy can be treated successfully in mice by antisense-induced exon skipping in the pre-mRNA coding for the structural protein dystrophin in muscle cells. For this purpose a sugar- and backbone-modified DNA analogue was designed, in which a tricyclic ring system substitutes the deoxyribose. These chemical modifications stabilize the dimers formed with the targeted RNA relative to native nucleic acid duplexes and increase the biostability of the antisense oligonucleotide. While evading enzymatic degradation constitutes an essential property of antisense oligonucleotides for therapeutic application, it renders the oligonucleotide inaccessible to biochemical sequencing techniques and requires the development of alternative methods based on mass spectrometry. The set of sequences studied includes tcDNA oligonucleotides ranging from 10 to 15 nucleotides in length as well as their hybrid duplexes with DNA and RNA complements. All samples were analyzed on a LTQ Orbitrap XL instrument equipped with a nano-electrospray source. For tandem mass spectrometric experiments collision-induced dissociation was performed, using helium as collision gas. Mass spectrometric sequencing of tcDNA oligomers manifests the applicability of the technique to substrates beyond the scope of enzyme-based methods. Sequencing requires the formation of characteristic backbone fragments, which take the form of a-B- and w-ions in the product ion spectra of tcDNA. These types of product ions are typically associated with unmodified DNA, which suggests a DNA-like fragmentation mechanism in tcDNA. The loss of nucleobases constitutes the second prevalent dissociation pathway observed in tcDNA. Comparison of partially and fully modified oligonucleotides indicates a pronounced impact of the sugar-moiety on the base loss. As this event initiates cleavage of the backbone, the presented results provide new mechanistic insights into the fragmentation of DNA in the gas-phase. The influence of the sugar-moiety on the dissociation extends to tcDNA:DNA and tcDNA:RNA hybrid duplexes, where base loss was found to be much more prominent from sugar-modified oligonucleotides than from their natural complements. Further prominent dissociation channels are strand separation and backbone cleavage of the single strands, as well as the ejection of backbone fragments from the intact duplex. The latter pathway depends noticeably on the base sequence. Moreover, it gives evidence of the high stability of the hybrid dimers, and thus directly reflects the affinity of tcDNA for its target in the cell. As the cellular target of tcDNA is a pre-mRNA, the structure was designed to discriminate RNA from DNA complements, which could be demonstrated by mass spectrometric experiments.
Resumo:
Abasic sites (AP-sites) are frequent DNA lesions, arising by spontaneous base hydrolysis or as intermediates of base excision repair (BER). The hemiacetal at the anomeric centre renders them chemically reactive, which presents a challenge to biochemical and structural investigation. Chemically more stable AP-site analogues have been used to avoid spontaneous decay, but these do not fully recapitulate the features of natural AP-sites. With its 3′-phosphate replaced by methylene, the abasic site analogue 3CAPS was suggested to circumvent some of these limitations. Here, we evaluated the properties of 3CAPS in biochemical BER assays with mammalian proteins. 3CAPS-containing DNA substrates were processed by APE1, albeit with comparably poor efficiency. APE1-cleaved 3CAPS can be extended by DNA polymerase β but repaired only by strand displacement as the 5′-deoxyribophosphate (dRP) cannot be removed. DNA glycosylases physically and functionally interact with 3CAPS substrates, underlining its structural integrity and biochemical reactivity. The AP lyase activity of bifunctional DNA glycosylases (NTH1, NEIL1, FPG), however, was fully inhibited. Notably, 3CAPS-containing DNA also effectively inhibited the activity of bifunctional glycosylases on authentic substrates. Hence, the chemically stable 3CAPS with its preserved hemiacetal functionality is a potent tool for BER research and a potential inhibitor of bifunctional DNA glycosylases.
Resumo:
The thesis is dedicated to the implementation of advanced x-ray-based techniques for the investigation of the battery systems, more predominantly, the cathode materials. The implemented characterisation methods include synchrotron based x-ray absorption spectroscopy, powder x-ray diffraction, 2-dimensional x-ray fluorescence, full field transmission soft x-ray microscopy, and laboratory x-ray photoelectron spectroscopy. The research highlights the different areas of expertise for each described method, in terms of material characterisation, exploring their complementarities and intersections. The results are focused over manganese hexacyanoferrate and partially Ni substituted manganese hexacyanoferrate, through both organic and aqueous battery systems. In aqueous system, the modification of cathode composition has been observed with various techniques, indicating to the processes occurring in bulk, surface, locally or in long-range, including with the speciation by 2-dimensional scanning, and the time-resolution, by the implementation of the operando measurements. In organic media, the inhomogenisation of the cathode material during the aging process was investigated by the development of the special image treatment procedure for the maps, obtained from the transmission soft x-ray microscopy. It worth mentioning, that apart from the combination of the outcomes from the various x-ray measurements, the exploration of the new capabilities was also conducted, namely, probing the oxidation state of the element with the synchrotron-based 2-dimensional x-ray fluorescence technique, which, generally, with conventional set up, is not possible to achieve. The results and methodology from this thesis can, of course, be generalised on the characterisation of the other battery systems, and not only, as the x-ray techniques are one of the most informative and sophisticated methods for advanced structural investigation of the materials.
Resumo:
The pentadentate H(3)bhci [1,3,5-trideoxy-1,3-bis((2-hydroxybenzyl)amino)-cis-inistol] and its bifunctionalized analogue H(3)bhci-glu-H [1,3,5-trideoxy-1,3-bis((2-hydroxybenzyl)amino)-5-glutaramido-cis-inositol] were synthesized, and their coordination chemistry was investigated with inactive rhenium, with no carrier added Re-188 and with carrier added Re-186. The neutral Re(V) complexes [ReO-(bhci)] and [ReO(bhci-glu-H)] are formed in good yields starting from [ReOCl3(P(C6H5)(3))(2)] or in quantitative yield directly from [(ReO4)-Re-186/188](-) in aqueous solution by reduction with Sn(II) or Sn(0). The X-ray structures of [ReO(bhci)] and [ReO(bhci-glu-H)] were elucidated revealing pentadentate side on coordination of the ligands to the Re=O core. The basic cyclohexane frame adopts a chair form in the case of [ReO(bhci)] and a twisted boat form in the case of [ReO(bhci-glu-H)]. [ReO(bhci)] crystallizes in the monoclinic space group C2/c with a = 27.425(3), b = 14.185(1), c = 19.047(2) Angstrom, and beta = 103.64(2)degrees and [ReO(bhci-glu-H)] in the monoclinic space group P2(1)/c with a = 13.056(3), b = 10.180(1), c = 22.378(5) Angstrom and beta = 98.205(9)degrees Both Re-188 complexes are stable in human serum for at least 3 days without decomposition. After injection into mice, [ReO(bhci-glu)](-) is readily excreted through the intestines, while [ReO(bhci)] is excreted by intestines, liver, and the kidneys. TLC investigations of the urine showed exclusively the complexes [ReO(bhci-glu-H)] and [ReO(bhci)], respectively, and no decomposition products. For derivatization of antibodies, the carboxylic group of [ReO(bhci-glu-H)] was activated with N-hydroxysuccinimide, which required unusually vigorous reaction conditions (heating). The anti colon cancer antibody mAb-35 [IgG and F(ab')(2) fragment] was labeled with [(ReO)-Re-186/188(bhci-glu)] to a specific activity of up to 1.5 mCi/mg (55 MBq/mg) with full retention of immunoreactivity. Labeling yields followed pseudo-first-order kinetics in antibody concentration with the ratio of rates between aminolysis and hydrolysis being about 2. Biodistributions of Re-186-labeled intact mAb-35 as well as of its F(ab')(2) fragment in tumor-bearing nude mice revealed good uptake by the tumor with only low accumulation of radioactivity in normal tissue.
Resumo:
The Ile-->Ser84 substitution in the thyroid hormone transport protein transthyretin is one of over 50 variations found to be associated with familial amyloid polyneuropathy, a hereditary type of lethal amyloidosis. Using a peptide analogue of the loop containing residue 84 in transthyretin, we have examined the putative local structural effects of this substitution using H-1-NMR spectroscopy. The peptide, containing residues 71-93 of transthyretin with its termini linked via a disulfide bond, was found to possess the same helix-turn motif as in the corresponding region of the crystallographically derived structure of transthyretin in 20% trifluoroethanol (TFE) solution. It therefore, represents a useful model with which to examine the effects of amyloidogenic substitutions. In a peptide analogue containing the Ile84-->Ser substitution it was found that the substitution does not greatly disrupt the overall three-dimensional structure, but leads to minor local differences at the turn in which residue 84 is involved. Coupling constant and NOE measurements indicate that the helix-turn motif is still present, but differences in chemical shifts and amide-exchange rates reflect a small distortion. This is in keeping with observations that several other mutant forms of transthyretin display similar subunit interactions and those that have been structurally analysed possess a near native structure. We propose that the Ser84 mutation induces only subtle perturbations to the transthyretin structure which predisposes the protein to amyloid formation.
Resumo:
This paper contributes to the literature on balance-of-payments constrained growth by investigating how structural change identified with changes in the sectoral composition of exports and imports affects the external constraint We test both the original and a multisectoral version of Thirlwall`s law for a sample of Latin American and Asian countries The original Thirlwall s law is found to hold for all sample countries except South Korea, whereas the multisectoral analogue holds for all of them As the sectoral composition of exports and imports is found to matter for growth we analyze the evolution of each country`s weighted trade income elasticities
Resumo:
Transthyretin (TTR) is a 55 kDa protein responsible for the transport of thyroid hormones and retinol in human serum. Misfolded forms of the protein are implicated in the amyloid diseases familial amyloidotic polyneuropathy and senile systemic amyloidosis. Its folding properties and stabilization by ligands are of current interest due to their importance in understanding and combating these diseases. To assist in such studies we developed a method for the solid phase synthesis of the monomeric unit of a TTR analogue and its folding to form a functional 55 kDa tetramer. The monomeric unit of the protein was chemically synthesized in three parts, comprising amino acid residues 151, 5499 and 102127, and ligated using chemoselective thioether ligation chemistry. The synthetic protein was folded and assembled to a tetrameric structure in the presence of the TTRs native ligand, thyroxine, as shown by gel filtration chromatography, native gel electrophoresis, TTR antibody recognition and thyroid hormone binding. In the current study the solution structure of the first of these fragment peptides, TTR(151) is examined to determine its intrinsic propensity to form beta-sheet structure, potentially involved in amyloid fibril formation by TTR. Despite the presence of extensive beta-structure in the native form of the protein, the Nterminal fragment adopts an essentially random coil conformation in solution.
Resumo:
Low-temperature (15 K) single-crystal neutron-diffraction structures and Raman spectra of the salts (NX4)(2)[CU(OX2)(6)](SO4)(2), where X = H or D, are reported. This study is concerned with the origin of the structural phase change that is known to occur upon deuteration. Data for the deuterated salt were measured in the metastable state, achieved by application of 500 bar of hydrostatic pressure at similar to303 K followed by cooling to 281 K and the subsequent release of pressure. This allows for the direct comparison between the hydrogenous and deuterated salts, in the same modification, at ambient pressure and low temperature. The Raman spectra provide no intimation of any significant change in the intermolecular bonding. Furthermore, structural differences are few, the largest being for the long Cu-O bond, which is 2.2834(5) and 2.2802(4) Angstrom for the hydrogenous and the deuterated salts, respectively. Calorimetric data for the deuterated salt are also presented, providing an estimate of 0.17(2) kJ/mol for the enthalpy difference between the two structural forms at 295.8(5) K. The structural data suggest that substitution of hydrogen for deuterium gives rise to changes in the hydrogen-bonding interactions that result in a slightly reduced force field about the copper(II) center. The small structural differences suggest different relative stabilities for the hydrogenous and deuterated salts, which may be sufficient to stabilize the hydrogenous salt in the anomalous structural form.
Resumo:
Structural studies of proteins aim at elucidating the atomic details of molecular interactions in biological processes of living organisms. These studies are particularly important in understanding structure, function and evolution of proteins and in defining their roles in complex biological settings. Furthermore, structural studies can be used for the development of novel properties in biomolecules of environmental, industrial and medical importance. X-ray crystallography is an invaluable tool to obtain accurate and precise information about the structure of proteins at the atomic level. Glutathione transferases (GSTs) are amongst the most versatile enzymes in nature. They are able to catalyze a wide variety of conjugation reactions between glutathione (GSH) and non-polar components containing an electrophilic carbon, nitrogen or sulphur atom. Plant GSTs from the Tau class (a poorly characterized class) play an important role in the detoxification of xenobiotics and stress tolerance. Structural studies were performed on a Tau class fluorodifen-inducible glutathione transferase from Glycine max (GmGSTU4-4) complexed with GSH (2.7 Å) and a product analogue Nb-GSH (1.7 Å). The three-dimensional structure of the GmGSTU4-4-GSH complex revealed that GSH binds in different conformations in the two subunits of the dimer: in an ionized form in one subunit and a non-ionized form in the second subunit. Only the ionized form of the substrate may lead to the formation of a catalytically competent complex. Structural comparison between the GSH and Nb-GSH bound complexes revealed significant differences with respect to the hydrogen-bonding, electrostatic interaction pattern, the upper part of -helix H4 and the C-terminus of the enzyme. These differences indicate an intrasubunit modulation between the G-and Hsites suggesting an induced-fit mechanism of xenobiotic substrate binding. A novel binding site on the surface of the enzyme was also revealed. Bacterial type-II L-asparaginases are used in the treatment of haematopoietic diseases such as acute lymphoblastic leukaemia (ALL) and lymphomas due to their ability to catalyze the conversion of L-asparagine to L-aspartate and ammonia. Escherichia coli and Erwinia chrysanthemi asparaginases are employed for the treatment of ALL for over 30 years. However, serious side-effects affecting the liver and pancreas have been observed due to the intrinsic glutaminase activity of the administered enzymes. Structural studies on Helicobacter pylori L-asparaginase (HpA) were carried out in an effort to discover novel L-asparaginases with potential chemotherapeutic utility in ALL treatment. Detailed analysis of the active site geometry revealed structurally significant differences between HpA and other Lasparaginases that may be important for the biological activities of the enzyme and could be further exploited in protein engineering efforts.