972 resultados para Stratified charge engines.
Resumo:
Transportation Department, Office of Systems Engineering, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
Genotype-based algorithms are valuable tools for the identification of patients eligible for CCR5 inhibitors administration in clinical practice. Among the available methods, geno2pheno[coreceptor] (G2P) is the most used online tool for tropism prediction. This study was conceived to assess if the combination of G2P prediction with V3 peptide net charge (NC) value could improve the accuracy of tropism prediction. A total of 172 V3 bulk sequences from 143 patients were analyzed by G2P and NC values. A phenotypic assay was performed by cloning the complete env gene and tropism determination was assessed on U87_CCR5(+)/CXCR4(+) cells. Sequences were stratified according to the agreement between NC values and G2P results. Of sequences predicted as X4 by G2P, 61% showed NC values higher than 5; similarly, 76% of sequences predicted as R5 by G2P had NC values below 4. Sequences with NC values between 4 and 5 were associated with different G2P predictions: 65% of samples were predicted as R5-tropic and 35% of sequences as X4-tropic. Sequences identified as X4 by NC value had at least one positive residue at positions known to be involved in tropism prediction and positive residues in position 32. These data supported the hypothesis that NC values between 4 and 5 could be associated with the presence of dual/mixed-tropic (DM) variants. The phenotypic assay performed on a subset of sequences confirmed the tropism prediction for concordant sequences and showed that NC values between 4 and 5 are associated with DM tropism. These results suggest that the combination of G2P and NC could increase the accuracy of tropism prediction. A more reliable identification of X4 variants would be useful for better selecting candidates for Maraviroc (MVC) administration, but also as a predictive marker in coreceptor switching, strongly associated with the phase of infection.
Resumo:
Lorenz’s theory of available p otential energy (APE) remains the main framework for studying the atmospheric and oceanic energy cycles. Because the APE generation rate is the volume integral of a thermodynamic efficiency times the local diabatic heating/cooling rate, APE theory is often regarded as an extension of the theory of heat engines. Available energetics in classical thermodynamics, however, usually relies on the concept of exergy, and is usually measured relative to a reference state maximising entropy at constant energy, whereas APE’s reference state minimises p otential energy at constant entropy. This review seeks to shed light on the two concepts; it covers local formulations of available energetics, alternative views of the dynamics/thermodynamics coupling, APE theory and the second law, APE production/dissipation, extensions to binary fluids, mean/eddy decomp ositions, APE in incompressible fluids, APE and irreversible turbulent mixing, and the role of mechanical forcing on APE production.
Resumo:
The aim of this project was to carry out an investigastion into suitable alternatives to gasoline for use in modern automobiles. The fuel would provide the western world with a means of extending the natural gasoline resources and the third world a way of cutting down their dependence on the oil producing countries for their energy supply. Alcohols, namely methanol and ethanol, provide this solution. They can be used as gasoline extenders or as fuels on their own.In order to fulfil the aims of the project a literature study was carried out to investigate methods and costs of producing these fuels. An experimental programme was then set up in which the performance of the alcohols was studied on a conventional engine. The engine used for this purpose was the Fiat 127 930cc four cylinder engine. This engine was used because of its popularity in the European countries. The Weber fixed jet carburettor, since it was designed to be used with gasoline, was adapted so that the alcohol fuels and the blends could be used in the most efficient way. This was mainly to take account of the lower heat content of the alcohols. The adaptation of the carburettor was in the form of enlarging the main metering jet. Allowances for the alcohol's lower specfic gravity were made during fuel metering.Owing to the low front end volatility of methanol and ethanol, it was expected that `start up' problems would occur. An experimental programme was set up to determine the temperature range for a minimum required percentage `take off' that would ease start-up since it was determined that a `take off' of about 5% v/v liquid in the vapour phase would be sufficient for starting. Additions such as iso-pentane and n-pentane were used to improve the front end volatility. This proved to be successful.The lower heat content of the alcohol fuels also meant that a greater charge of fuel would be required. This was seen to pose further problems with fuel distribution from the carburettor to the individual cylinders on a multicylinder engine. Since it was not possible to modify the existing manifold on the Fiat 127 engine, experimental tests on manifold geometry were carried out using the Ricardo E6 single cylinder variable compression engine. Results from these tests showed that the length, shape and cross-sectional area of the manifold play an important part in the distribution of the fuel entering the cylinder, ie. vapour phase, vapour/small liquid droplet/liquid film phase, vapour/large liquid droplet/liquid film phase etc.The solvent properties of the alcohols and their greater electrical conductivity suggested that the materials used on the engine would be prone to chemical attack. In order to determine the type and rate of chemical attack, an experimental programme was set up whereby carburettor and other components were immersed in the alcohols and in blends of alcohol with gasoline. The test fuels were aerated and in some instances kept at temperatures ranging from 50oC to 90oC. Results from these tests suggest that not all materials used in the conventional engine are equally suitable for use with alcohols and alcohol/gasoline blends. Aluminium for instance was severely attacked by methanol causing pitting and pin-holing in the surface.In general this whole experimental programme gave valuable information on the acceptability of substitute fuels. While the long term effects of alcohol use merit further study, it is clear that methanol and ethanol will be increasingly used in place of gasoline.
Resumo:
Local parity-odd domains are theorized to form inside a quark-gluon plasma which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect. The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this Letter, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39, and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy and tends to vanish by 7.7 GeV. This implies the dominance of hadronic interactions over partonic ones at lower collision energies.
Resumo:
We report the first measurements of the moments--mean (M), variance (σ(2)), skewness (S), and kurtosis (κ)--of the net-charge multiplicity distributions at midrapidity in Au+Au collisions at seven energies, ranging from sqrt[sNN]=7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net charge, and are sensitive to the location of the QCD critical point. We compare the products of the moments, σ(2)/M, Sσ, and κσ(2), with the expectations from Poisson and negative binomial distributions (NBDs). The Sσ values deviate from the Poisson baseline and are close to the NBD baseline, while the κσ(2) values tend to lie between the two. Within the present uncertainties, our data do not show nonmonotonic behavior as a function of collision energy. These measurements provide a valuable tool to extract the freeze-out parameters in heavy-ion collisions by comparing with theoretical models.
Resumo:
Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.
Resumo:
This work describes the infrared spectroscopy characterization and the charge compensation dynamics in supramolecular film FeTPPZFeCN derived from tetra-2-pyridyl-1,4-pyrazine (TPPZ) with hexacyanoferrate, as well as the hybrid film formed by FeTPPZFeCN and polypyrrole (PPy). For supramolecular film, it was found that anion flux is greater in a K+ containing solution than in Li+ solution, which seems to be due to the larger crystalline ionic radius of K+. The electroneutralization process is discussed in terms of electrostatic interactions between cations and metallic centers in the hosting matrix. The nature of the charge compensation process differs from others modified electrodes based on Prussian blue films, where only cations such as K+ participate in the electroneutralization process. In the case of FeTPPZFeCN/PPy hybrid film, the magnitude of the anions’s flux is also dependent on the identity of the anion of the supporting electrolyte.
Resumo:
The interplay between the biocolloidal characteristics (especially size and charge), pH, salt concentration and the thermal energy results in a unique collection of mesoscopic forces of importance to the molecular organization and function in biological systems. By means of Monte Carlo simulations and semi-quantitative analysis in terms of perturbation theory, we describe a general electrostatic mechanism that gives attraction at low electrolyte concentrations. This charge regulation mechanism due to titrating amino acid residues is discussed in a purely electrostatic framework. The complexation data reported here for interaction between a polyelectrolyte chain and the proteins albumin, goat and bovine alpha-lactalbumin, beta-lactoglobulin, insulin, k-casein, lysozyme and pectin methylesterase illustrate the importance of the charge regulation mechanism. Special attention is given to pH congruent to pI where ion-dipole and charge regulation interactions could overcome the repulsive ion-ion interaction. By means of protein mutations, we confirm the importance of the charge regulation mechanism, and quantify when the complexation is dominated either by charge regulation or by the ion-dipole term.
Resumo:
We present measurements of net charge fluctuations in Au+Au collisions at s(NN)=19.6, 62.4, 130, and 200 GeV, Cu+Cu collisions at s(NN)=62.4 and 200 GeV, and p+p collisions at s=200 GeV using the dynamical net charge fluctuations measure nu(+-,dyn). We observe that the dynamical fluctuations are nonzero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate 1/N(ch) scaling but display approximate 1/N(part) scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.
Resumo:
The magnetized MINOS Near Detector, at a depth of 225 mwe, is used to measure the atmospheric muon charge ratio. The ratio of observed positive to negative atmospheric muon rates, using 301 days of data, is measured to be 1.266 +/- 0.001(stat)(-0.014)(+0.015)(syst). This measurement is consistent with previous results from other shallow underground detectors and is 0.108 +/- 0.019(stat + syst) lower than the measurement at the functionally identical MINOS Far Detector at a depth of 2070 mwe. This increase in charge ratio as a function of depth is consistent with an increase in the fraction of muons arising from kaon decay for increasing muon surface energies.
Resumo:
We analyze the breaking of Lorentz invariance in a 3D model of fermion fields self-coupled through four-fermion interactions. The low-energy limit of the theory contains various submodels which are similar to those used in the study of graphene or in the description of irrational charge fractionalization.
Resumo:
We study the transport properties of HgTe-based quantum wells containing simultaneously electrons and holes in a magnetic field B. At the charge neutrality point (CNP) with nearly equal electron and hole densities, the resistance is found to increase very strongly with B while the Hall resistivity turns to zero. This behavior results in a wide plateau in the Hall conductivity sigma(xy) approximate to 0 and in a minimum of diagonal conductivity sigma(xx) at nu = nu(p) - nu(n) = 0, where nu(n) and nu(p) are the electron and hole Landau level filling factors. We suggest that the transport at the CNP point is determined by electron-hole ""snake states'' propagating along the nu = 0 lines. Our observations are qualitatively similar to the quantum Hall effect in graphene as well as to the transport in a random magnetic field with a zero mean value.