944 resultados para Stochastic exponential stabilities


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with exponential stability of discrete-time singular systems with Markov jump parameters. We propose a set of coupled generalized Lyapunov equations (CGLE) that provides sufficient conditions to check this property for this class of systems. A method for solving the obtained CGLE is also presented, based on iterations of standard singular Lyapunov equations. We present also a numerical example to illustrate the effectiveness of the approach we are proposing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to simulate stiff biochemical reaction systems, an explicit exponential Euler scheme is derived for multidimensional, non-commutative stochastic differential equations with a semilinear drift term. The scheme is of strong order one half and A-stable in mean square. The combination with this and the projection method shows good performance in numerical experiments dealing with an alternative formulation of the chemical Langevin equation for a human ether a-go-go related gene ion channel mode

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sufficient conditions for the exponential stability of a class ofnonlinear, non-autonomous stochastic differential equations in infinitedimensions are studied. The analysis consists of introducing a suitableapproximating solution systems and using a limiting argument to pass onstability of strong solutions to mild ones. As a consequence, the classicalcriteriaof stability in A. Ichikawa [8] are improved and extended to cover a class ofnon-autonomous stochastic evolution equations.Two examples are investigated to illustrate our theory.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper develops a novel realized matrix-exponential stochastic volatility model of multivariate returns and realized covariances that incorporates asymmetry and long memory (hereafter the RMESV-ALM model). The matrix exponential transformation guarantees the positivedefiniteness of the dynamic covariance matrix. The contribution of the paper ties in with Robert Basmann’s seminal work in terms of the estimation of highly non-linear model specifications (“Causality tests and observationally equivalent representations of econometric models”, Journal of Econometrics, 1988, 39(1-2), 69–104), especially for developing tests for leverage and spillover effects in the covariance dynamics. Efficient importance sampling is used to maximize the likelihood function of RMESV-ALM, and the finite sample properties of the quasi-maximum likelihood estimator of the parameters are analysed. Using high frequency data for three US financial assets, the new model is estimated and evaluated. The forecasting performance of the new model is compared with a novel dynamic realized matrix-exponential conditional covariance model. The volatility and co-volatility spillovers are examined via the news impact curves and the impulse response functions from returns to volatility and co-volatility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stochastic models for competing clonotypes of T cells by multivariate, continuous-time, discrete state, Markov processes have been proposed in the literature by Stirk, Molina-París and van den Berg (2008). A stochastic modelling framework is important because of rare events associated with small populations of some critical cell types. Usually, computational methods for these problems employ a trajectory-based approach, based on Monte Carlo simulation. This is partly because the complementary, probability density function (PDF) approaches can be expensive but here we describe some efficient PDF approaches by directly solving the governing equations, known as the Master Equation. These computations are made very efficient through an approximation of the state space by the Finite State Projection and through the use of Krylov subspace methods when evolving the matrix exponential. These computational methods allow us to explore the evolution of the PDFs associated with these stochastic models, and bimodal distributions arise in some parameter regimes. Time-dependent propensities naturally arise in immunological processes due to, for example, age-dependent effects. Incorporating time-dependent propensities into the framework of the Master Equation significantly complicates the corresponding computational methods but here we describe an efficient approach via Magnus formulas. Although this contribution focuses on the example of competing clonotypes, the general principles are relevant to multivariate Markov processes and provide fundamental techniques for computational immunology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years considerable attention has been paid to the numerical solution of stochastic ordinary differential equations (SODEs), as SODEs are often more appropriate than their deterministic counterparts in many modelling situations. However, unlike the deterministic case numerical methods for SODEs are considerably less sophisticated due to the difficulty in representing the (possibly large number of) random variable approximations to the stochastic integrals. Although Burrage and Burrage [High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations, Applied Numerical Mathematics 22 (1996) 81-101] were able to construct strong local order 1.5 stochastic Runge-Kutta methods for certain cases, it is known that all extant stochastic Runge-Kutta methods suffer an order reduction down to strong order 0.5 if there is non-commutativity between the functions associated with the multiple Wiener processes. This order reduction down to that of the Euler-Maruyama method imposes severe difficulties in obtaining meaningful solutions in a reasonable time frame and this paper attempts to circumvent these difficulties by some new techniques. An additional difficulty in solving SODEs arises even in the Linear case since it is not possible to write the solution analytically in terms of matrix exponentials unless there is a commutativity property between the functions associated with the multiple Wiener processes. Thus in this present paper first the work of Magnus [On the exponential solution of differential equations for a linear operator, Communications on Pure and Applied Mathematics 7 (1954) 649-673] (applied to deterministic non-commutative Linear problems) will be applied to non-commutative linear SODEs and methods of strong order 1.5 for arbitrary, linear, non-commutative SODE systems will be constructed - hence giving an accurate approximation to the general linear problem. Secondly, for general nonlinear non-commutative systems with an arbitrary number (d) of Wiener processes it is shown that strong local order I Runge-Kutta methods with d + 1 stages can be constructed by evaluated a set of Lie brackets as well as the standard function evaluations. A method is then constructed which can be efficiently implemented in a parallel environment for this arbitrary number of Wiener processes. Finally some numerical results are presented which illustrate the efficacy of these approaches. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper studies stochastic approximation as a technique for bias reduction. The proposed method does not require approximating the bias explicitly, nor does it rely on having independent identically distributed (i.i.d.) data. The method always removes the leading bias term, under very mild conditions, as long as auxiliary samples from distributions with given parameters are available. Expectation and variance of the bias-corrected estimate are given. Examples in sequential clinical trials (non-i.i.d. case), curved exponential models (i.i.d. case) and length-biased sampling (where the estimates are inconsistent) are used to illustrate the applications of the proposed method and its small sample properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurement of individual emission sources (e.g., animals or pen manure) within intensive livestock enterprises is necessary to test emission calculation protocols and to identify targets for decreased emissions. In this study, a vented, fabric-covered large chamber (4.5 × 4.5 m, 1.5 m high; encompassing greater spatial variability than a smaller chamber) in combination with on-line analysis (nitrous oxide [N2O] and methane [CH4] via Fourier Transform Infrared Spectroscopy; 1 analysis min-1) was tested as a means to isolate and measure emissions from beef feedlot pen manure sources. An exponential model relating chamber concentrations to ambient gas concentrations, air exchange (e.g., due to poor sealing with the surface; model linear when ≈ 0 m3 s-1), and chamber dimensions allowed data to be fitted with high confidence. Alternating manure source emission measurements using the large-chamber and the backward Lagrangian stochastic (bLS) technique (5-mo period; bLS validated via tracer gas release, recovery 94-104%) produced comparable N2O and CH4 emission values (no significant difference at P < 0.05). Greater precision of individual measurements was achieved via the large chamber than for the bLS (mean ± standard error of variance components: bLS half-hour measurements, 99.5 ± 325 mg CH4 s-1 and 9.26 ± 20.6 mg N2O s-1; large-chamber measurements, 99.6 ± 64.2 mg CH4 s-1 and 8.18 ± 0.3 mg N2O s-1). The large-chamber design is suitable for measurement of emissions from manure on pen surfaces, isolating these emissions from surrounding emission sources, including enteric emissions. © © American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uncertainties in complex dynamic systems play an important role in the prediction of a dynamic response in the mid- and high-frequency ranges. For distributed parameter systems, parametric uncertainties can be represented by random fields leading to stochastic partial differential equations. Over the past two decades, the spectral stochastic finite-element method has been developed to discretize the random fields and solve such problems. On the other hand, for deterministic distributed parameter linear dynamic systems, the spectral finite-element method has been developed to efficiently solve the problem in the frequency domain. In spite of the fact that both approaches use spectral decomposition (one for the random fields and the other for the dynamic displacement fields), very little overlap between them has been reported in literature. In this paper, these two spectral techniques are unified with the aim that the unified approach would outperform any of the spectral methods considered on their own. An exponential autocorrelation function for the random fields, a frequency-dependent stochastic element stiffness, and mass matrices are derived for the axial and bending vibration of rods. Closed-form exact expressions are derived by using the Karhunen-Loève expansion. Numerical examples are given to illustrate the unified spectral approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We extend the classic Merton (1969, 1971) problem that investigates the joint consumption-savings and portfolio-selection problem under capital risk by assuming sophisticated but time-inconsistent agents. We introduce stochastic hyperbolic preferences as in Harris and Laibson (2013) and find closed-form solutions for Merton's optimal consumption and portfolio selection problem in continuous time. We find that the portfolio rule remains identical to the time-consistent solution with power utility and no borrowing constraints. However,the marginal propensity to consume out of wealth is unambiguously greater than the time-consistent, exponential case and,importantly, it is also more responsive to changes in risk. These results suggest that hyperbolic discounting with sophisticated agents offers promise for contributing to explaining important aspects of asset market data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gough, John; Van Handel, R., (2007) 'Singular perturbation of quantum stochastic differential equations with coupling through an oscillator mode', Journal of Statistical Physics 127(3) pp.575-607 RAE2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this paper is to investigate the p-ίh moment asymptotic stability decay rates for certain finite-dimensional Itό stochastic differential equations. Motivated by some practical examples, the point of our analysis is a special consideration of general decay speeds, which contain as a special case the usual exponential or polynomial type one, to meet various situations. Sufficient conditions for stochastic differential equations (with variable delays or not) are obtained to ensure their asymptotic properties. Several examples are studied to illustrate our theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis deals with analysis of some Stochastic Inventory Models with Pooling/Retrial of Customers.. In the first model we analyze an (s,S) production Inventory system with retrial of customers. Arrival of customers from outside the system form a Poisson process. The inter production times are exponentially distributed with parameter µ. When inventory level reaches zero further arriving demands are sent to the orbit which has capacity M(<∞). Customers, who find the orbit full and inventory level at zero are lost to the system. Demands arising from the orbital customers are exponentially distributed with parameter γ. In the model-II we extend these results to perishable inventory system assuming that the life-time of each item follows exponential with parameter θ. The study deals with an (s,S) production inventory with service times and retrial of unsatisfied customers. Primary demands occur according to a Markovian Arrival Process(MAP). Consider an (s,S)-retrial inventory with service time in which primary demands occur according to a Batch Markovian Arrival Process (BMAP). The inventory is controlled by the (s,S) policy and (s,S) inventory system with service time. Primary demands occur according to Poissson process with parameter λ. The study concentrates two models. In the first model we analyze an (s,S) Inventory system with postponed demands where arrivals of demands form a Poisson process. In the second model, we extend our results to perishable inventory system assuming that the life-time of each item follows exponential distribution with parameter θ. Also it is assumed that when inventory level is zero the arriving demands choose to enter the pool with probability β and with complementary probability (1- β) it is lost for ever. Finally it analyze an (s,S) production inventory system with switching time. A lot of work is reported under the assumption that the switching time is negligible but this is not the case for several real life situation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis entitled Analysis of Some Stochastic Models in Inventories and Queues. This thesis is devoted to the study of some stochastic models in Inventories and Queues which are physically realizable, though complex. It contains a detailed analysis of the basic stochastic processes underlying these models. In this thesis, (s,S) inventory systems with nonidentically distributed interarrival demand times and random lead times, state dependent demands, varying ordering levels and perishable commodities with exponential life times have been studied. The queueing system of the type Ek/Ga,b/l with server vacations, service systems with single and batch services, queueing system with phase type arrival and service processes and finite capacity M/G/l queue when server going for vacation after serving a random number of customers are also analysed. The analogy between the queueing systems and inventory systems could be exploited in solving certain models. In vacation models, one important result is the stochastic decomposition property of the system size or waiting time. One can think of extending this to the transient case. In inventory theory, one can extend the present study to the case of multi-item, multi-echelon problems. The study of perishable inventory problem when the commodities have a general life time distribution would be a quite interesting problem. The analogy between the queueing systems and inventory systems could be exploited in solving certain models.