19 resultados para Steganalysis
Resumo:
In this paper, we propose a new multi-class steganalysis for binary image. The proposed method can identify the type of steganographic technique used by examining on the given binary image. In addition, our proposed method is also capable of differentiating an image with hidden message from the one without hidden message. In order to do that, we will extract some features from the binary image. The feature extraction method used is a combination of the method extended from our previous work and some new methods proposed in this paper. Based on the extracted feature sets, we construct our multi-class steganalysis from the SVM classifier. We also present the empirical works to demonstrate that the proposed method can effectively identify five different types of steganography.
Resumo:
In this paper, we propose a new blind steganalytic method to detect the presence of secret messages embedded in black and white images using the steganographic techniques. We start by extracting several sets of matrix, such as run length matrix, gap length matrix and pixel difference. We also apply characteristic function on these matrices to enhance their discriminative capabilities. Then we calculate the statistics which include mean, variance, kurtosis and skewness to form our feature sets. The presented empirical works demonstrate our proposed method can effectively detect three different types of steganography. This proves the universality of our proposed method as a blind steganalysis. In addition, the experimental results show our proposed method is capable of detecting small amount of the embedded message.
Resumo:
In this research, we introduce a new blind steganalysis in detecting grayscale JPEG images. Features-pooling method is employed to extract the steganalytic features and the classification is done by using neural network. Three different steganographic models are tested and classification results are compared to the five state-of-the-art blind steganalysis.
Resumo:
In this research, we introduce an approach to enhance the discriminative capability of features by employing image-to-image variation minimization. In order to minimize image-to-image variation, we will estimate the cover image from the stego image by decompressing the stego image, transforming the decompressed image and recompressing back. Since the effect of the embedding operation in an image steganography is actually a noise adding process to the image, applying these three processes will smooth out the noise and hence the estimated cover image can be obtained.
Resumo:
This paper is concerned with the universal (blind) image steganalysis problem and introduces a novel method to detect especially spatial domain steganographic methods. The proposed steganalyzer models linear dependencies of image rows/columns in local neighborhoods using singular value decomposition transform and employs content independency provided by a Wiener filtering process. Experimental results show that the novel method has superior performance when compared with its counterparts in terms of spatial domain steganography. Experiments also demonstrate the reasonable ability of the method to detect discrete cosine transform-based steganography as well as the perturbation quantization method.
Resumo:
Blind steganalysis of JPEG images is addressed by modeling the correlations among the DCT coefficients using K -variate (K = 2) p.d.f. estimates (p.d.f.s) constructed by means of Markov random field (MRF) cliques. The reasoning of using high variate p.d.f.s together with MRF cliques for image steganalysis is explained via a classical detection problem. Although our approach has many improvements over the current state-of-the-art, it suffers from the high dimensionality and the sparseness of the high variate p.d.f.s. The dimensionality problem as well as the sparseness problem are solved heuristically by means of dimensionality reduction and feature selection algorithms. The detection accuracy of the proposed method(s) is evaluated over Memon's (30.000 images) and Goljan's (1912 images) image sets. It is shown that practically applicable steganalysis systems are possible with a suitable dimensionality reduction technique and these systems can provide, in general, improved detection accuracy over the current state-of-the-art. Experimental results also justify this assertion.
Resumo:
High Efficiency Video Coding (HEVC) is the most recent video codec coming after currently most popular H.264/MPEG4 codecs and has promising compression capabilities. It is conjectured that it will be a substitute for current video compression standards. However, to the best knowledge of the authors, none of the current video steganalysis methods designed or tested with HEVC video. In this paper, pixel domain steganography applied on HEVC video is targeted for the first time. Also, its the first paper that employs accordion unfolding transformation, which merges temporal and spatial correlation, in pixel domain video steganalysis. With help of the transformation, temporal correlation is incorporated into the system. Its demonstrated for three different feature sets that integrating temporal dependency substantially increased the detection accuracy.
Resumo:
We propose a spatio-temporal rich model of motion vector planes as a part of a full steganalytic system against motion vector based steganography. Superior detection accuracy of the rich model over the previous methods has been lately demonstrated for digital images in both spatial and DCT domain. It has not been heretofore used for detection of motion vector steganography. We also introduced a transformation so as to extend the feature set with temporal residuals. We carried out the tests along with most recent motion vector steganalysis and steganography methods. Test results show that the proposed model delivers an outstanding performance compared to the previous methods.
Resumo:
This paper proposes a novel method of detecting packed executable files using steganalysis, primarily targeting the detection of obfuscated malware through packing. Considering that over 80% of malware in the wild is packed, detection accuracy and low false negative rates are important properties of malware detection methods. Experimental results outlined in this paper reveal that the proposed approach achieving an overall detection accuracy of greater than 99%, a false negative rate of 1% and a false positive rate of 0%.
Resumo:
A rich model based motion vector steganalysis benefiting from both temporal and spatial correlations of motion vectors is proposed in this work. The proposed steganalysis method has a substantially superior detection accuracy than the previous methods, even the targeted ones. The improvement in detection accuracy lies in several novel approaches introduced in this work. Firstly, it is shown that there is a strong correlation, not only spatially but also temporally, among neighbouring motion vectors for longer distances. Therefore, temporal motion vector dependency along side the spatial dependency is utilized for rigorous motion vector steganalysis. Secondly, unlike the filters previously used, which were heuristically designed against a specific motion vector steganography, a diverse set of many filters which can capture aberrations introduced by various motion vector steganography methods is used. The variety and also the number of the filter kernels are substantially more than that of used in previous ones. Besides that, filters up to fifth order are employed whereas the previous methods use at most second order filters. As a result of these, the proposed system captures various decorrelations in a wide spatio-temporal range and provides a better cover model. The proposed method is tested against the most prominent motion vector steganalysis and steganography methods. To the best knowledge of the authors, the experiments section has the most comprehensive tests in motion vector steganalysis field including five stego and seven steganalysis methods. Test results show that the proposed method yields around 20% detection accuracy increase in low payloads and 5% in higher payloads.
Resumo:
In this paper, we propose a steganalysis method that is able to identify the locations of stego bearing pixels in the binary image. In order to do that, our proposed method will calculate the residual between a given stego image and its estimated cover image. After that, we will compute the local entropy difference between these two versions of images as well. Finally, we will compute the mean of residual and mean of local entropy difference across multiple stego images. From these two means, the locations of stego bearing pixels can be identified. The presented empirical results demonstrate that our proposed method can identify the stego bearing locations of near perfect accuracy when sufficient stego images are supplied. Hence, our proposed method can be used to reveal which pixels in the binary image have been used to carry the secret message.