867 resultados para Statistical Energy Analysis
Resumo:
Analytical and closed form solutions are presented in this paper for the vibration response of an L-shaped plate under a point force or a moment excitation. Inter-relationships between wave components of the source and the receiving plates are clearly defined. Explicit expressions are given for the quadratic quantities such as input power, energy flow and kinetic energy distributions of the L-shaped plate. Applications of statistical energy analysis (SEA) formulation in the prediction of the vibration response of finite coupled plate structures under a single deterministic forcing are examined and quantified. It is found that the SEA method can be employed to predict the frequency averaged vibration response and energy flow of coupled plate structures under a deterministic force or moment excitation when the structural system satisfies the following conditions: (1) the coupling loss factors of the coupled subsystems are known; (2) the source location is more than a quarter of the plate bending wavelength away from the source plate edges in the point force excitation case, or is more than a quarter wavelength away from the pair of source plate edges perpendicular to the moment axis in the moment excitation case due to the directional characteristic of moment excitations. SEA overestimates the response of the L-shaped plate when the source location is less than a quarter bending wavelength away from the respective plate edges owing to wave coherence effect at the plate boundary