957 resultados para Standard model
Resumo:
We consider one-round key exchange protocols secure in the standard model. The security analysis uses the powerful security model of Canetti and Krawczyk and a natural extension of it to the ID-based setting. It is shown how KEMs can be used in a generic way to obtain two different protocol designs with progressively stronger security guarantees. A detailed analysis of the performance of the protocols is included; surprisingly, when instantiated with specific KEM constructions, the resulting protocols are competitive with the best previous schemes that have proofs only in the random oracle model.
Resumo:
We consider one-round key exchange protocols secure in the standard model. The security analysis uses the powerful security model of Canetti and Krawczyk and a natural extension of it to the ID-based setting. It is shown how KEMs can be used in a generic way to obtain two different protocol designs with progressively stronger security guarantees. A detailed analysis of the performance of the protocols is included; surprisingly, when instantiated with specific KEM constructions, the resulting protocols are competitive with the best previous schemes that have proofs only in the random oracle model.
Resumo:
We consider one-round key exchange protocols secure in the standard model. The security analysis uses the powerful security model of Canetti and Krawczyk and a natural extension of it to the ID-based setting. It is shown how KEMs can be used in a generic way to obtain two different protocol designs with progressively stronger security guarantees. A detailed analysis of the performance of the protocols is included; surprisingly, when instantiated with specific KEM constructions, the resulting protocols are competitive with the best previous schemes that have proofs only in the random oracle model.
Resumo:
Minimizing complexity of group key exchange (GKE) protocols is an important milestone towards their practical deployment. An interesting approach to achieve this goal is to simplify the design of GKE protocols by using generic building blocks. In this paper we investigate the possibility of founding GKE protocols based on a primitive called multi key encapsulation mechanism (mKEM) and describe advantages and limitations of this approach. In particular, we show how to design a one-round GKE protocol which satisfies the classical requirement of authenticated key exchange (AKE) security, yet without forward secrecy. As a result, we obtain the first one-round GKE protocol secure in the standard model. We also conduct our analysis using recent formal models that take into account both outsider and insider attacks as well as the notion of key compromise impersonation resilience (KCIR). In contrast to previous models we show how to model both outsider and insider KCIR within the definition of mutual authentication. Our analysis additionally implies that the insider security compiler by Katz and Shin from ACM CCS 2005 can be used to achieve more than what is shown in the original work, namely both outsider and insider KCIR.
Resumo:
We give a direct construction of a certificateless key encapsulation mechanism (KEM) in the standard model that is more efficient than the generic constructions proposed before by Huang and Wong \cite{DBLP:conf/acisp/HuangW07}. We use a direct construction from Kiltz and Galindo's KEM scheme \cite{DBLP:conf/acisp/KiltzG06} to obtain a certificateless KEM in the standard model; our construction is roughly twice as efficient as the generic construction. We also address the security flaw discovered by Selvi et al. \cite{cryptoeprint:2009:462}.
Resumo:
We show how to construct a certificateless key agreement protocol from the certificateless key encapsulation mechanism introduced by \cite{lippold-ICISC_2009} in ICISC 2009 using the \cite{DBLP:conf/acisp/BoydCNP08} protocol from ACISP 2008. We introduce the Canetti-Krawczyk (CK) model for certificateless cryptography, give security notions for Type I and Type II adversaries in the CK model, and highlight the differences to the existing e$^2$CK model discussed by \cite{DBLP:conf/pairing/LippoldBN09}. The resulting CK model is more relaxed thus giving more power to the adversary than the original CK model.
Resumo:
Client puzzles are cryptographic problems that are neither easy nor hard to solve. Most puzzles are based on either number theoretic or hash inversions problems. Hash-based puzzles are very efficient but so far have been shown secure only in the random oracle model; number theoretic puzzles, while secure in the standard model, tend to be inefficient. In this paper, we solve the problem of constucting cryptographic puzzles that are secure int he standard model and are very efficient. We present an efficient number theoretic puzzle that satisfies the puzzle security definition of Chen et al. (ASIACRYPT 2009). To prove the security of our puzzle, we introduce a new variant of the interval discrete logarithm assumption which may be of independent interest, and show this new problem to be hard under reasonable assumptions. Our experimental results show that, for 512-bit modulus, the solution verification time of our proposed puzzle can be up to 50x and 89x faster than the Karame-Capkum puzzle and the Rivest et al.'s time-lock puzzle respectively. In particular, the solution verification tiem of our puzzle is only 1.4x slower than that of Chen et al.'s efficient hash based puzzle.
Resumo:
We construct an efficient identity based encryption system based on the standard learning with errors (LWE) problem. Our security proof holds in the standard model. The key step in the construction is a family of lattices for which there are two distinct trapdoors for finding short vectors. One trapdoor enables the real system to generate short vectors in all lattices in the family. The other trapdoor enables the simulator to generate short vectors for all lattices in the family except for one. We extend this basic technique to an adaptively-secure IBE and a Hierarchical IBE.
Resumo:
The notion of certificateless public-key encryption (CL-PKE) was introduced by Al-Riyami and Paterson in 2003 that avoids the drawbacks of both traditional PKI-based public-key encryption (i.e., establishing public-key infrastructure) and identity-based encryption (i.e., key escrow). So CL-PKE like identity-based encryption is certificate-free, and unlike identity-based encryption is key escrow-free. In this paper, we introduce simple and efficient CCA-secure CL-PKE based on (hierarchical) identity-based encryption. Our construction has both theoretical and practical interests. First, our generic transformation gives a new way of constructing CCA-secure CL-PKE. Second, instantiating our transformation using lattice-based primitives results in a more efficient CCA-secure CL-PKE than its counterpart introduced by Dent in 2008.
Resumo:
An encryption scheme is non-malleable if giving an encryption of a message to an adversary does not increase its chances of producing an encryption of a related message (under a given public key). Fischlin introduced a stronger notion, known as complete non-malleability, which requires attackers to have negligible advantage, even if they are allowed to transform the public key under which the related message is encrypted. Ventre and Visconti later proposed a comparison-based definition of this security notion, which is more in line with the well-studied definitions proposed by Bellare et al. The authors also provide additional feasibility results by proposing two constructions of completely non-malleable schemes, one in the common reference string model using non-interactive zero-knowledge proofs, and another using interactive encryption schemes. Therefore, the only previously known completely non-malleable (and non-interactive) scheme in the standard model, is quite inefficient as it relies on generic NIZK approach. They left the existence of efficient schemes in the common reference string model as an open problem. Recently, two efficient public-key encryption schemes have been proposed by Libert and Yung, and Barbosa and Farshim, both of them are based on pairing identity-based encryption. At ACISP 2011, Sepahi et al. proposed a method to achieve completely non-malleable encryption in the public-key setting using lattices but there is no security proof for the proposed scheme. In this paper we review the mentioned scheme and provide its security proof in the standard model. Our study shows that Sepahi’s scheme will remain secure even for post-quantum world since there are currently no known quantum algorithms for solving lattice problems that perform significantly better than the best known classical (i.e., non-quantum) algorithms.
Resumo:
NTRUEncrypt is a fast and practical lattice-based public-key encryption scheme, which has been standardized by IEEE, but until recently, its security analysis relied only on heuristic arguments. Recently, Stehlé and Steinfeld showed that a slight variant (that we call pNE) could be proven to be secure under chosen-plaintext attack (IND-CPA), assuming the hardness of worst-case problems in ideal lattices. We present a variant of pNE called NTRUCCA, that is IND-CCA2 secure in the standard model assuming the hardness of worst-case problems in ideal lattices, and only incurs a constant factor overhead in ciphertext and key length over the pNE scheme. To our knowledge, our result gives the first IND-CCA2 secure variant of NTRUEncrypt in the standard model, based on standard cryptographic assumptions. As an intermediate step, we present a construction for an All-But-One (ABO) lossy trapdoor function from pNE, which may be of independent interest. Our scheme uses the lossy trapdoor function framework of Peikert and Waters, which we generalize to the case of (k − 1)-of-k-correlated input distributions.
Resumo:
This paper presents ongoing work toward constructing efficient completely non-malleable public-key encryption scheme based on lattices in the standard (common reference string) model. An encryption scheme is completely non-malleable if it requires attackers to have negligible advantage, even if they are allowed to transform the public key under which the related message is encrypted. Ventre and Visconti proposed two inefficient constructions of completely non-malleable schemes, one in the common reference string model using non-interactive zero-knowledge proofs, and another using interactive encryption schemes. Recently, two efficient public-key encryption schemes have been proposed, both of them are based on pairing identity-based encryption.
Resumo:
This is a summary of the beyond the Standard Model (including model building working group of the WHEPP-X workshop held at Chennai from January 3 to 15, 2008.
Resumo:
"We report on a search for the standard-model Higgs boson in pp collisions at s=1.96 TeV using an integrated luminosity of 2.0 fb(-1). We look for production of the Higgs boson decaying to a pair of bottom quarks in association with a vector boson V (W or Z) decaying to quarks, resulting in a four-jet final state. Two of the jets are required to have secondary vertices consistent with B-hadron decays. We set the first 95% confidence level upper limit on the VH production cross section with V(-> qq/qq('))H(-> bb) decay for Higgs boson masses of 100-150 GeV/c(2) using data from run II at the Fermilab Tevatron. For m(H)=120 GeV/c(2), we exclude cross sections larger than 38 times the standard-model prediction."