1000 resultados para Spreadsheet Modelling


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The potential for simple linear relationships arising from a computer game to build student modelling and "world problem" skills is explored. The fundamental capability of the spreadsheet to tabulate and graph possible solutions is used to lay bare the problem structure for the students.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kenia liegt in den Äquatorialtropen von Ostafrika und ist als ein weltweiter Hot-Spot für Aflatoxinbelastung insbesondere bei Mais bekannt. Diese toxischen und karzinogenen Verbindungen sind Stoffwechselprodukte von Pilzen und so insbesondere von der Wasseraktivität abhängig. Diese beeinflusst sowohl die Trocknung als auch die Lagerfähigkeit von Nahrungsmitteln und ist somit ein wichtiger Faktor bei der Entwicklung von energieeffizienten und qualitätsorientierten Verarbeitungsprozessen. Die vorliegende Arbeit hat sich zum Ziel gesetzt, die Veränderung der Wasseraktivität während der konvektiven Trocknung von Mais zu untersuchen. Mittels einer Optimierungssoftware (MS Excel Solver) wurde basierend auf sensorerfassten thermo-hygrometrischen Daten der gravimetrische Feuchteverlust von Maiskolben bei 37°C, 43°C und 53°C vorausberechnet. Dieser Bereich stellt den Übergang zwischen Niedrig- und Hochtemperaturtrocknung dar. Die Ergebnisse zeigen deutliche Unterschiede im Verhalten der Körner und der Spindel. Die Trocknung im Bereich von 35°C bis 45°C kombiniert mit hohen Strömungsgeschwindigkeiten (> 1,5 m / s) begünstigte die Trocknung der Körner gegenüber der Spindel und kann daher für eine energieeffiziente Trocknung von Kolben mit hohem Anfangsfeuchtegehalt empfohlen werden. Weitere Untersuchungen wurden zum Verhalten unterschiedlicher Schüttungen bei der bei Mais üblichen Satztrocknung durchgeführt. Entlieschter und gedroschener Mais führte zu einem vergrößerten Luftwiderstand in der Schüttung und sowohl zu einem höheren Energiebedarf als auch zu ungleichmäßigerer Trocknung, was nur durch einen erhöhten technischen Aufwand etwa durch Mischeinrichtungen oder Luftumkehr behoben werden könnte. Aufgrund des geringeren Aufwandes für die Belüftung und die Kontrolle kann für kleine landwirtschaftliche Praxisbetriebe in Kenia daher insbesondere die Trocknung ganzer Kolben in ungestörten Schüttungen empfohlen werden. Weiterhin wurde in der Arbeit die Entfeuchtung mittels eines Trockenmittels (Silikagel) kombiniert mit einer Heizquelle und abgegrenztem Luftvolumen untersucht und der konventionellen Trocknung gegenüber gestellt. Die Ergebnisse zeigten vergleichbare Entfeuchtungsraten während der ersten 5 Stunden der Trocknung. Der jeweilige Luftzustand bei Verwendung von Silikagel wurde insbesondere durch das eingeschlossene Luftvolumen und die Temperatur beeinflusst. Granulierte Trockenmittel sind bei der Maistrocknung unter hygienischen Gesichtspunkten vorteilhaft und können beispielsweise mit einfachen Öfen regeneriert werden, so dass Qualitätsbeeinträchtigungen wie bei Hochtemperatur- oder auch Freilufttrocknung vermieden werden können. Eine hochwertige Maistrocknungstechnik ist sehr kapitalintensiv. Aus der vorliegenden Arbeit kann aber abgeleitet werden, dass einfache Verbesserungen wie eine sensorgestützte Belüftung von Satztrocknern, der Einsatz von Trockenmitteln und eine angepasste Schüttungshöhe praktikable Lösungen für Kleinbauern in Kenia sein können. Hierzu besteht, ggf. auch zum Aspekt der Verwendung regenerativer Energien, weiterer Forschungsbedarf.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers’ peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers’ location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price,managed supply, etc., in a conceptual ‘map’ of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tick box interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the locations and highlighted that household numbers, demographics as well as the different climates were significant factors. It presented possible network peak demand reductions which would delay any upgrade of networks, resulting in savings for Queensland utilities and ultimately for households. The use of this systems approach using Bayesian networks to assist the management of peak demand in different modelled locations in Queensland provided insights about the most important elements in the system and the intervention strategies that could be tailored to the targeted customer segments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study summarizes previously published and updated empirical relations for the estimation of production/biomass ratios in benthic invertebrates; of natural mortality in benthic invertebrates and finfish; and of respiration from production and vice versa in animal populations. AMS-EXCEL spreadsheet containing these equations is available from the author via Email. They are also included in the Ecopath with Ecosim software.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study is to produce a series of Conceptual Ecological Models (CEMs) that represent sublittoral rock habitats in the UK. CEMs are diagrammatic representations of the influences and processes that occur within an ecosystem. They can be used to identify critical aspects of an ecosystem that may be studied further, or serve as the basis for the selection of indicators for environmental monitoring purposes. The models produced by this project are control diagrams, representing the unimpacted state of the environment free from anthropogenic pressures. It is intended that the models produced by this project will be used to guide indicator selection for the monitoring of this habitat in UK waters. CEMs may eventually be produced for a range of habitat types defined under the UK Marine Biodiversity Monitoring R&D Programme (UKMBMP), which, along with stressor models, are designed to show the interactions within impacted habitats, would form the basis of a robust method for indicator selection. This project builds on the work to develop CEMs for shallow sublittoral coarse sediment habitats (Alexander et al 2014). The project scope included those habitats defined as ‘sublittoral rock’. This definition includes those habitats that fall into the EUNIS Level 3 classifications A3.1 Atlantic and Mediterranean high energy infralittoral rock, A3.2 Atlantic and Mediterranean moderate energy infralittoral rock, A3.3 Atlantic and Mediterranean low energy infralittoral rock, A4.1 Atlantic and Mediterranean high energy circalittoral rock, A4.2 Atlantic and Mediterranean moderate energy circalittoral rock, and A4.3 Atlantic and Mediterranean low energy circalittoral rock as well as the constituent Level 4 and 5 biotopes that are relevant to UK waters. A species list of characterising fauna to be included within the scope of the models was identified using an iterative process to refine the full list of species found within the relevant Level 5 biotopes. A literature review was conducted using a pragmatic and iterative approach to gather evidence regarding species traits and information that would be used to inform the models and characterise the interactions that occur within the sublittoral rock habitat. All information gathered during the literature review was entered into a data logging pro-forma spreadsheet that accompanies this report. Wherever possible, attempts were made to collect information from UK-specific peer-reviewed studies, although other sources were used where necessary. All data gathered was subject to a detailed confidence assessment. Expert judgement by the project team was utilised to provide information for aspects of the models for which references could not be sourced within the project timeframe. A multivariate analysis approach was adopted to assess ecologically similar groups (based on ecological and life history traits) of fauna from the identified species to form the basis of the models. A model hierarchy was developed based on these ecological groups. One general control model was produced that indicated the high-level drivers, inputs, biological assemblages, ecosystem processes and outputs that occur in sublittoral rock habitats. In addition to this, seven detailed sub-models were produced, which each focussed on a particular ecological group of fauna within the habitat: ‘macroalgae’, ‘temporarily or permanently attached active filter feeders’, ‘temporarily or permanently attached passive filter feeders’, ‘bivalves, brachiopods and other encrusting filter feeders’, ‘tube building fauna’, ‘scavengers and predatory fauna’, and ‘non-predatory mobile fauna’. Each sub-model is accompanied by an associated confidence model that presents confidence in the links between each model component. The models are split into seven levels and take spatial and temporal scale into account through their design, as well as magnitude and direction of influence. The seven levels include regional to global drivers, water column processes, local inputs/processes at the seabed, habitat and biological assemblage, output processes, local ecosystem functions, and regional to global ecosystem functions. The models indicate that whilst the high level drivers that affect each ecological group are largely similar, the output processes performed by the biota and the resulting ecosystem functions vary both in number and importance between groups. Confidence within the models as a whole is generally high, reflecting the level of information gathered during the literature review. Physical drivers which influence the ecosystem were found to be of high importance for the sublittoral rock habitat, with factors such as wave exposure, water depth and water currents noted to be crucial in defining the biological assemblages. Other important factors such as recruitment/propagule supply, and those which affect primary production, such as suspended sediments, light attenuation and water chemistry and temperature, were also noted to be key and act to influence the food sources consumed by the biological assemblages of the habitat, and the biological assemblages themselves. Output processes performed by the biological assemblages are variable between ecological groups depending on the specific flora and fauna present and the role they perform within the ecosystem. Of particular importance are the outputs performed by the macroalgae group, which are diverse in nature and exert influence over other ecological groups in the habitat. Important output processes from the habitat as a whole include primary and secondary production, bioengineering, biodeposition (in mixed sediment habitats) and the supply of propagules; these in turn influence ecosystem functions at the local scale such as nutrient and biogeochemical cycling, supply of food resources, sediment stability (in mixed sediment habitats), habitat provision and population and algae control. The export of biodiversity and organic matter, biodiversity enhancement and biotope stability are the resulting ecosystem functions that occur at the regional to global scale. Features within the models that are most useful for monitoring habitat status and change due to natural variation have been identified, as have those that may be useful for monitoring to identify anthropogenic causes of change within the ecosystem. Biological, physical and chemical features of the ecosystem have been identified as potential indicators to monitor natural variation, whereas biological factors and those physical /chemical factors most likely to affect primary production have predominantly been identified as most likely to indicate change due to anthropogenic pressures.