990 resultados para Speed limits
Resumo:
Variable Speed Limits (VSL) is a control tool of Intelligent Transportation Systems (ITS) which can enhance traffic safety and which has the potential to contribute to traffic efficiency. This study presents the results of a calibration and operational analysis of a candidate VSL algorithm for high flow conditions on an urban motorway of Queensland, Australia. The analysis was done using a framework consisting of a microscopic simulation model combined with runtime API and a proposed efficiency index. The operational analysis includes impacts on speed-flow curve, travel time, speed deviation, fuel consumption and emission.
Resumo:
Any incident on motorways potentially can be followed by secondary crashes. Rear-end crashes also could happen as a result of queue formation downstream of high speed platoons. To decrease the occurrence of secondary crashes and rear-end crashes, Variable Speed Limits (VSL) can be applied to protect queue formed downstream. This paper focuses on fine tuning the Queue Protection algorithm of VSL. Three performance indicators: activation time, deactivation time and number of false alarms are selected to optimise the Queue Protection algorithm. A calibrated microscopic traffic simulation model of Pacific Motorway in Brisbane is used for the optimisation. Performance of VSL during an incident and heavy congestion and the benefit of VSL will be presented in the paper.
Resumo:
Variable Speed Limits (VSL) is an Intelligent Transportation Systems (ITS) control tool which can enhance traffic safety and which has the potential to contribute to traffic efficiency. Queensland's motorways experience a large volume of commuter traffic in peak periods, leading to heavy recurrent congestion and a high frequency of incidents. Consequently, Queensland's Department of Transport and Main Roads have considered deploying VSL to improve safety and efficiency. This paper identifies three types of VSL and three applicable conditions for activating VSL on for Queensland motorways: high flow, queuing and adverse weather. The design objectives and methodology for each condition are analysed, and micro-simulation results are presented to demonstrate the effectiveness of VSL.
Resumo:
Motorway off-ramps are a significant source of traffic congestion and collisions. Heavy diverging traffic to off-ramps slows down the mainline traffic speed. When the off-ramp queue spillbacks onto the mainline, it leads to a major breakdown of the motorway capacity and a significant threat to the traffic safety. This paper proposes using Variable Speed Limits (VSL) for protection of the motorway off-ramp queue and thus to promote safety in congested diverging areas. To support timely activation of VSL in advance of queue spillover, a proactive control strategy is proposed based on a real-time off-ramp queue estimation and prediction. This process determines the estimated queue size in the near-term future, on which the decision to change speed limits is made. VSL can effectively slow down traffic as it is mandatory that drivers follow the changed speed limits. A collateral benefit of VSL is its potential effect on drivers making them more attentive to the surrounding traffic conditions, and prepared for a sudden braking of the leading car. This paper analyses and quantifies these impacts and potential benefits of VSL on traffic safety and efficiency using the microsimulation approach.
Resumo:
Changing factors (mainly traffic intensity and weather conditions) affecting road conditions require a suitable optimal speed at any time. To solve this problem, variable speed limit systems (VSL) ? as opposed to fixed limits ? have been developed in recent decades. This term has included a number of speed management systems, most notably dynamic speed limits (DSL). In order to avoid the indiscriminate use of both terms in the literature, this paper proposes a simple classification and offers a review of some experiences, how their effects are evaluated and their results This study also presents a key indicator, which measures the speed homogeneity and a methodology to obtain the data based on floating cars and GPS technology applying it to a case study on a section of the M30 urban motorway in Madrid (Spain).
Resumo:
Changing factors (mainly traffic intensity and weather conditions) affecting road conditions require a suitable optimal speed at any time. To solve this problem, variable speed limit systems (VSL) - as opposed to fixed limits - have been developed in recent decades. This term has included a number of speed management systems, most notably dynamic speed limits (DSL). In order to avoid the indiscriminate use of both terms in the literature, this paper proposes a simple classification and offers a review of some experiences, how their effects are evaluated and their results. This study also presents a key indicator which measures the speed homogeneity and a methodology to obtain the data based on floating cars and GPS technology applying it to a case study on a section of the M30 urban motorway in Madrid (Spain). It also presents the relation between this indicator and road performance and emissions values.
Resumo:
The city of Madrid keeps not meeting the GHG and air pollutant limits set by the European legislation. A broad range of strategies have being taken into account to reduce both types of emissions; however traffic management meas ures are usually consigned to the sidelines. In 2004, Madrid City Council launched a plan to re-design its inner ring-road supported by a socioeconomic study that evaluated the environmental and operational benefits of the project. For safety reasons the planned speed limit for the tunnel section was finally reduced from 90km/h to 70km/h. Using a Macroscopic Traffic Model and the European Air Pollutant and Emissions Inventory Guidebook (EMEP/EEA), this paper examines the environmental and traffic performance consequences of this decision. Results support the thesis that reduced speed limits leads to GHG and air pollution reductions in the area affected by the measure without substantially altering traffic performance. The implementation of the new speed limit policy brings about a 15% and 16% reduction in both CO2 and NOx emissions respectively. Emissions’ reduction during off-peak hours is larger than during peak hours.
Resumo:
Federal Highway Administration, Office of Safety and Traffic Operations Research and Development, McLean, Va.
Resumo:
"B-229461"--P. 1.
Resumo:
Mode of access: Internet.
Resumo:
Traffic demand increases are pushing aging ground transportation infrastructures to their theoretical capacity. The result of this demand is traffic bottlenecks that are a major cause of delay on urban freeways. In addition, the queues associated with those bottlenecks increase the probability of a crash while adversely affecting environmental measures such as emissions and fuel consumption. With limited resources available for network expansion, traffic professionals have developed active traffic management systems (ATMS) in an attempt to mitigate the negative consequences of traffic bottlenecks. Among these ATMS strategies, variable speed limits (VSL) and ramp metering (RM) have been gaining international interests for their potential to improve safety, mobility, and environmental measures at freeway bottlenecks. Though previous studies have shown the tremendous potential of variable speed limit (VSL) and VSL paired with ramp metering (VSLRM) control, little guidance has been developed to assist decision makers in the planning phase of a congestion mitigation project that is considering VSL or VSLRM control. To address this need, this study has developed a comprehensive decision/deployment support tool for the application of VSL and VSLRM control in recurrently congested environments. The decision tool will assist practitioners in deciding the most appropriate control strategy at a candidate site, which candidate sites have the most potential to benefit from the suggested control strategy, and how to most effectively design the field deployment of the suggested control strategy at each implementation site. To do so, the tool is comprised of three key modules, (1) Decision Module, (2) Benefits Module, and (3) Deployment Guidelines Module. Each module uses commonly known traffic flow and geometric parameters as inputs to statistical models and empirically based procedures to provide guidance on the application of VSL and VSLRM at each candidate site. These models and procedures were developed from the outputs of simulated experiments, calibrated with field data. To demonstrate the application of the tool, a list of real-world candidate sites were selected from the Maryland State Highway Administration Mobility Report. Here, field data from each candidate site was input into the tool to illustrate the step-by-step process required for efficient planning of VSL or VSLRM control. The output of the tool includes the suggested control system at each site, a ranking of the sites based on the expected benefit-to-cost ratio, and guidelines on how to deploy the VSL signs, ramp meters, and detectors at the deployment site(s). This research has the potential to assist traffic engineers in the planning of VSL and VSLRM control, thus enhancing the procedure for allocating limited resources for mobility and safety improvements on highways plagued by recurrent congestion.
Resumo:
This paper reports on a study investigating preferred driving speeds and frequency of speeding of 320 Queensland drivers. Despite growing community concern about speeding and extensive research linking it to road trauma, speeding remains a pervasive, and arguably, socially acceptable behaviour. This presents an apparent paradox regarding the mismatch between beliefs and behaviours, and highlights the necessity to better understand the factors contributing to speeding. Utilising self-reported behaviour and attitudinal measures, results of this study support the notion of a speed paradox. Two thirds of participants agreed that exceeding the limit is not worth the risks nor is it okay to exceed the posted limit. Despite this, more than half (58.4%) of the participants reported a preference to exceed the 100km/hour speed limit, with one third preferring to do so by 10 to 20 km/hour. Further, mean preferred driving speeds on both urban and open roads suggest a perceived enforcement tolerance of 10%, suggesting that posted limits have limited direct influence on speed choice. Factors that significantly predicted the frequency of speeding included: exposure to role models who speed; favourable attitudes to speeding; experiences of punishment avoidance; and the perceived certainty of punishment for speeding. These findings have important policy implications, particularly relating to the use of enforcement tolerances.
Resumo:
Noncompliance with speed limits is one of the major safety concerns in roadwork zones. Although numerous studies have attempted to evaluate the effectiveness of safety measures on speed limit compliance, many report inconsistent findings. This paper aims to review the effectiveness of four categories of roadwork zone speed control measures: Informational, Physical, Enforcement, and Educational measures. While informational measures (static signage, variable message signage) evidently have small to moderate effects on speed reduction, physical measures (rumble strips, optical speed bars) are found ineffective for transient and moving work zones. Enforcement measures (speed camera, police presence) have the greatest effects, while educational measures also have significant potential to improve public awareness of roadworker safety and to encourage slower speeds in work zones. Inadequate public understanding of roadwork risks and hazards, failure to notice signs, and poor appreciation of safety measures are the major causes of noncompliance with speed limits.
Resumo:
Exceeding the speed limit and driving too fast for the conditions are regularly cited as significant contributing factors in traffic crashes, particularly fatal and serious injury crashes. Despite an extensive body of research highlighting the relationship between increased vehicle speeds and crash risk and severity, speeding remains a pervasive behaviour on Australian roads. The development of effective countermeasures designed to reduce the prevalence of speeding behaviour requires that this behaviour is well understood. The primary aim of this program of research was to develop a better understanding of the influence of drivers’ perceptions and attitudes toward police speed enforcement on speeding behaviour. Study 1 employed focus group discussions with 39 licensed drivers to explore the influence of perceptions relating to specific characteristics of speed enforcement policies and practices on drivers’ attitudes towards speed enforcement. Three primary factors were identified as being most influential: site selection; visibility; and automaticity (i.e., whether the enforcement approach is automated/camera-based or manually operated). Perceptions regarding these enforcement characteristics were found to influence attitudes regarding the perceived legitimacy and transparency of speed enforcement. Moreover, misperceptions regarding speed enforcement policies and practices appeared to also have a substantial impact on attitudes toward speed enforcement, typically in a negative direction. These findings have important implications for road safety given that prior research has suggested that the effectiveness of speed enforcement approaches may be reduced if efforts are perceived by drivers as being illegitimate, such that they do little to encourage voluntary compliance. Study 1 also examined the impact of speed enforcement approaches varying in the degree of visibility and automaticity on self-reported willingness to comply with speed limits. These discussions suggested that all of the examined speed enforcement approaches (see Section 1.5 for more details) generally showed potential to reduce vehicle speeds and encourage compliance with posted speed limits. Nonetheless, participant responses suggested a greater willingness to comply with approaches operated in a highly visible manner, irrespective of the corresponding level of automaticity of the approach. While less visible approaches were typically associated with poorer rates of driver acceptance (e.g., perceived as “sneaky” and “unfair”), participants reported that such approaches would likely encourage long-term and network-wide impacts on their own speeding behaviour, as a function of the increased unpredictability of operations and increased direct (specific deterrence) and vicarious (general deterrence) experiences with punishment. Participants in Study 1 suggested that automated approaches, particularly when operated in a highly visible manner, do little to encourage compliance with speed limits except in the immediate vicinity of the enforcement location. While speed cameras have been criticised on such grounds in the past, such approaches can still have substantial road safety benefits if implemented in high-risk settings. Moreover, site-learning effects associated with automated approaches can also be argued to be a beneficial by-product of enforcement, such that behavioural modifications are achieved even in the absence of actual enforcement. Conversely, manually operated approaches were reported to be associated with more network-wide impacts on behaviour. In addition, the reported acceptance of such methods was high, due to the increased swiftness of punishment, ability for additional illegal driving behaviours to be policed and the salutary influence associated with increased face-to-face contact with authority. Study 2 involved a quantitative survey conducted with 718 licensed Queensland drivers from metropolitan and regional areas. The survey sought to further examine the influence of the visibility and automaticity of operations on self-reported likelihood and duration of compliance. Overall, the results from Study 2 corroborated those of Study 1. All examined approaches were again found to encourage compliance with speed limits, such that all approaches could be considered to be “effective”. Nonetheless, significantly greater self-reported likelihood and duration of compliance was associated with visibly operated approaches, irrespective of the corresponding automaticity of the approach. In addition, the impact of automaticity was influenced by visibility; such that significantly greater self-reported likelihood of compliance was associated with manually operated approaches, but only when they are operated in a less visible fashion. Conversely, manually operated approaches were associated with significantly greater durations of self-reported compliance, but only when they are operated in a highly visible manner. Taken together, the findings from Studies 1 and 2 suggest that enforcement efforts, irrespective of their visibility or automaticity, generally encourage compliance with speed limits. However, the duration of these effects on behaviour upon removal of the enforcement efforts remains questionable and represents an area where current speed enforcement practices could possibly be improved. Overall, it appears that identifying the optimal mix of enforcement operations, implementing them at a sufficient intensity and increasing the unpredictability of enforcement efforts (e.g., greater use of less visible approaches, random scheduling) are critical elements of success. Hierarchical multiple regression analyses were also performed in Study 2 to investigate the punishment-related and attitudinal constructs that influence self-reported frequency of speeding behaviour. The research was based on the theoretical framework of expanded deterrence theory, augmented with three particular attitudinal constructs. Specifically, previous research examining the influence of attitudes on speeding behaviour has typically focussed on attitudes toward speeding behaviour in general only. This research sought to more comprehensively explore the influence of attitudes by also individually measuring and analysing attitudes toward speed enforcement and attitudes toward the appropriateness of speed limits on speeding behaviour. Consistent with previous research, a number of classical and expanded deterrence theory variables were found to significantly predict self-reported frequency of speeding behaviour. Significantly greater speeding behaviour was typically reported by those participants who perceived punishment associated with speeding to be less certain, who reported more frequent use of punishment avoidance strategies and who reported greater direct experiences with punishment. A number of interesting differences in the significant predictors among males and females, as well as younger and older drivers, were reported. Specifically, classical deterrence theory variables appeared most influential on the speeding behaviour of males and younger drivers, while expanded deterrence theory constructs appeared more influential for females. These findings have important implications for the development and implementation of speeding countermeasures. Of the attitudinal factors, significantly greater self-reported frequency of speeding behaviour was reported among participants who held more favourable attitudes toward speeding and who perceived speed limits to be set inappropriately low. Disappointingly, attitudes toward speed enforcement were found to have little influence on reported speeding behaviour, over and above the other deterrence theory and attitudinal constructs. Indeed, the relationship between attitudes toward speed enforcement and self-reported speeding behaviour was completely accounted for by attitudes toward speeding. Nonetheless, the complexity of attitudes toward speed enforcement are not yet fully understood and future research should more comprehensively explore the measurement of this construct. Finally, given the wealth of evidence (both in general and emerging from this program of research) highlighting the association between punishment avoidance and speeding behaviour, Study 2 also sought to investigate the factors that influence the self-reported propensity to use punishment avoidance strategies. A standard multiple regression analysis was conducted for exploratory purposes only. The results revealed that punishment-related and attitudinal factors significantly predicted approximately one fifth of the variance in the dependent variable. The perceived ability to avoid punishment, vicarious punishment experience, vicarious punishment avoidance and attitudes toward speeding were all significant predictors. Future research should examine these relationships more thoroughly and identify additional influential factors. In summary, the current program of research has a number of implications for road safety and speed enforcement policy and practice decision-making. The research highlights a number of potential avenues for the improvement of public education regarding enforcement efforts and provides a number of insights into punishment avoidance behaviours. In addition, the research adds strength to the argument that enforcement approaches should not only demonstrate effectiveness in achieving key road safety objectives, such as reduced vehicle speeds and associated crashes, but also strive to be transparent and legitimate, such that voluntary compliance is encouraged. A number of potential strategies are discussed (e.g., point-to-point speed cameras, intelligent speed adaptation. The correct mix and intensity of enforcement approaches appears critical for achieving optimum effectiveness from enforcement efforts, as well as enhancements in the unpredictability of operations and swiftness of punishment. Achievement of these goals should increase both the general and specific deterrent effects associated with enforcement through an increased perceived risk of detection and a more balanced exposure to punishment and punishment avoidance experiences.