998 resultados para Speech Synthesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent developments on Hidden Markov Models (HMM) based speech synthesis showed that this is a promising technology fully capable of competing with other established techniques. However some issues still lack a solution. Several authors report an over-smoothing phenomenon on both time and frequencies which decreases naturalness and sometimes intelligibility. In this work we present a new vowel intelligibility enhancement algorithm that uses a discrete Kalman filter (DKF) for tracking frame based parameters. The inter-frame correlations are modelled by an autoregressive structure which provides an underlying time frame dependency and can improve time-frequency resolution. The system’s performance has been evaluated using objective and subjective tests and the proposed methodology has led to improved results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work an adaptive filtering scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for Hidden Markov Model (HMM) based speech synthesis quality enhancement. The objective is to improve signal smoothness across HMMs and their related states and to reduce artifacts due to acoustic model's limitations. Both speech and artifacts are modelled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. Themodel parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The quality enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. The system's performance has been evaluated using mean opinion score tests and the proposed technique has led to improved results.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present MikeTalk, a text-to-audiovisual speech synthesizer which converts input text into an audiovisual speech stream. MikeTalk is built using visemes, which are a small set of images spanning a large range of mouth shapes. The visemes are acquired from a recorded visual corpus of a human subject which is specifically designed to elicit one instantiation of each viseme. Using optical flow methods, correspondence from every viseme to every other viseme is computed automatically. By morphing along this correspondence, a smooth transition between viseme images may be generated. A complete visual utterance is constructed by concatenating viseme transitions. Finally, phoneme and timing information extracted from a text-to-speech synthesizer is exploited to determine which viseme transitions to use, and the rate at which the morphing process should occur. In this manner, we are able to synchronize the visual speech stream with the audio speech stream, and hence give the impression of a photorealistic talking face.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to obtain more human like sounding humanmachine interfaces we must first be able to give them expressive capabilities in the way of emotional and stylistic features so as to closely adequate them to the intended task. If we want to replicate those features it is not enough to merely replicate the prosodic information of fundamental frequency and speaking rhythm. The proposed additional layer is the modification of the glottal model, for which we make use of the GlottHMM parameters. This paper analyzes the viability of such an approach by verifying that the expressive nuances are captured by the aforementioned features, obtaining 95% recognition rates on styled speaking and 82% on emotional speech. Then we evaluate the effect of speaker bias and recording environment on the source modeling in order to quantify possible problems when analyzing multi-speaker databases. Finally we propose a speaking styles separation for Spanish based on prosodic features and check its perceptual significance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When designing human-machine interfaces it is important to consider not only the bare bones functionality but also the ease of use and accessibility it provides. When talking about voice-based inter- faces, it has been proven that imbuing expressiveness into the synthetic voices increases signi?cantly its perceived naturalness, which in the end is very helpful when building user friendly interfaces. This paper proposes an adaptation based expressiveness transplantation system capable of copying the emotions of a source speaker into any desired target speaker with just a few minutes of read speech and without requiring the record- ing of additional expressive data. This system was evaluated through a perceptual test for 3 speakers showing up to an average of 52% emotion recognition rates relative to the natural voice recognition rates, while at the same time keeping good scores in similarity and naturality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the biggest challenges in speech synthesis is the production of naturally sounding synthetic voices. This means that the resulting voice must be not only of high enough quality but also that it must be able to capture the natural expressiveness imbued in human speech. This paper focus on solving the expressiveness problem by proposing a set of different techniques that could be used for extrapolating the expressiveness of proven high quality speaking style models into neutral speakers in HMM-based synthesis. As an additional advantage, the proposed techniques are based on adaptation approaches, which means that they can be used with little training data (around 15 minutes of training data are used in each style for this paper). For the final implementation, a set of 4 speaking styles were considered: news broadcasts, live sports commentary, interviews and parliamentary speech. Finally, the implementation of the 5 techniques were tested through a perceptual evaluation that proves that the deviations between neutral and speaking style average models can be learned and used to imbue expressiveness into target neutral speakers as intended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El uso universal de síntesis de voz en diferentes aplicaciones requeriría un desarrollo sencillo de las nuevas voces con poca intervención manual. Teniendo en cuenta la cantidad de datos multimedia disponibles en Internet y los medios de comunicación, un objetivo interesante es el desarrollo de herramientas y métodos para construir automáticamente las voces de estilo de varios de ellos. En un trabajo anterior se esbozó una metodología para la construcción de este tipo de herramientas, y se presentaron experimentos preliminares con una base de datos multiestilo. En este artículo investigamos más a fondo esta tarea y proponemos varias mejoras basadas en la selección del número apropiado de hablantes iniciales, el uso o no de filtros de reducción de ruido, el uso de la F0 y el uso de un algoritmo de detección de música. Hemos demostrado que el mejor sistema usando un algoritmo de detección de música disminuye el error de precisión 22,36% relativo para el conjunto de desarrollo y 39,64% relativo para el montaje de ensayo en comparación con el sistema base, sin degradar el factor de mérito. La precisión media para el conjunto de prueba es 90.62% desde 76.18% para los reportajes de 99,93% para los informes meteorológicos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional Text-To-Speech (TTS) systems have been developed using especially-designed non-expressive scripted recordings. In order to develop a new generation of expressive TTS systems in the Simple4All project, real recordings from the media should be used for training new voices with a whole new range of speaking styles. However, for processing this more spontaneous material, the new systems must be able to deal with imperfect data (multi-speaker recordings, background and foreground music and noise), filtering out low-quality audio segments and creating mono-speaker clusters. In this paper we compare several architectures for combining speaker diarization and music and noise detection which improve the precision and overall quality of the segmentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes an emotion transplantation method capable of modifying a synthetic speech model through the use of CSMAPLR adaptation in order to incorporate emotional information learned from a different speaker model while maintaining the identity of the original speaker as much as possible. The proposed method relies on learning both emotional and speaker identity information by means of their adaptation function from an average voice model, and combining them into a single cascade transform capable of imbuing the desired emotion into the target speaker. This method is then applied to the task of transplanting four emotions (anger, happiness, sadness and surprise) into 3 male speakers and 3 female speakers and evaluated in a number of perceptual tests. The results of the evaluations show how the perceived naturalness for emotional text significantly favors the use of the proposed transplanted emotional speech synthesis when compared to traditional neutral speech synthesis, evidenced by a big increase in the perceived emotional strength of the synthesized utterances at a slight cost in speech quality. A final evaluation with a robotic laboratory assistant application shows how by using emotional speech we can significantly increase the students’ satisfaction with the dialog system, proving how the proposed emotion transplantation system provides benefits in real applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer speech synthesis has reached a high level of performance, with increasingly sophisticated models of linguistic structure, low error rates in text analysis, and high intelligibility in synthesis from phonemic input. Mass market applications are beginning to appear. However, the results are still not good enough for the ubiquitous application that such technology will eventually have. A number of alternative directions of current research aim at the ultimate goal of fully natural synthetic speech. One especially promising trend is the systematic optimization of large synthesis systems with respect to formal criteria of evaluation. Speech recognition has progressed rapidly in the past decade through such approaches, and it seems likely that their application in synthesis will produce similar improvements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term "speech synthesis" has been used for diverse technical approaches. In this paper, some of the approaches used to generate synthetic speech in a text-to-speech system are reviewed, and some of the basic motivations for choosing one method over another are discussed. It is important to keep in mind, however, that speech synthesis models are needed not just for speech generation but to help us understand how speech is created, or even how articulation can explain language structure. General issues such as the synthesis of different voices, accents, and multiple languages are discussed as special challenges facing the speech synthesis community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conversion of text to speech is seen as an analysis of the input text to obtain a common underlying linguistic description, followed by a synthesis of the output speech waveform from this fundamental specification. Hence, the comprehensive linguistic structure serving as the substrate for an utterance must be discovered by analysis from the text. The pronunciation of individual words in unrestricted text is determined by morphological analysis or letter-to-sound conversion, followed by specification of the word-level stress contour. In addition, many text character strings, such as titles, numbers, and acronyms, are abbreviations for normal words, which must be derived. To further refine these pronunciations and to discover the prosodic structure of the utterance, word part of speech must be computed, followed by a phrase-level parsing. From this structure the prosodic structure of the utterance can be determined, which is needed in order to specify the durational framework and fundamental frequency contour of the utterance. In discourse contexts, several factors such as the specification of new and old information, contrast, and pronominal reference can be used to further modify the prosodic specification. When the prosodic correlates have been computed and the segmental sequence is assembled, a complete input suitable for speech synthesis has been determined. Lastly, multilingual systems utilizing rule frameworks are mentioned, and future directions are characterized.