950 resultados para Species Distribution Modeling
Resumo:
To understand the resilience of aquatic ecosystems to environmental change, it is important to determine how multiple, related environmental factors, such as near-surface air temperature and river flow, will change during the next century. This study develops a novel methodology that combines statistical downscaling and fish species distribution modeling, to enhance the understanding of how global climate changes (modeled by global climate models at coarse-resolution) may affect local riverine fish diversity. The novelty of this work is the downscaling framework developed to provide suitable future projections of fish habitat descriptors, focusing particularly on the hydrology which has been rarely considered in previous studies. The proposed modeling framework was developed and tested in a major European system, the Adour-Garonne river basin (SW France, 116,000 km(2)), which covers distinct hydrological and thermal regions from the Pyrenees to the Atlantic coast. The simulations suggest that, by 2100, the mean annual stream flow is projected to decrease by approximately 15% and temperature to increase by approximately 1.2 °C, on average. As consequence, the majority of cool- and warm-water fish species is projected to expand their geographical range within the basin while the few cold-water species will experience a reduction in their distribution. The limitations and potential benefits of the proposed modeling approach are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
Resumo:
Species distribution models (SDMs) can be useful for different conservation purposes. We discuss the importance of fitting spatial scale and using current records and relevant predictors aiming conservation. We choose jaguar (Panthera onca) as a target species and Brazil and Atlantic Forest biome as study areas. We tested two different extents (continent and biome) and resolutions (similar to 4 Km and similar to 1 Km) in Maxent with 186 records and 11 predictors (bioclimatic, elevation, land-use and landscape structure). All models presented satisfactory AUC values (>0.70) and low omission errors (<23%). SDMs were scale-sensitive as the use of reduced extent implied in significant gains to model performance generating more constrained and real predictive distribution maps. Continental-scale models performed poorly in predicting potential current jaguar distribution, but they reached the historic distribution. Specificity increased significantly from coarse to finer-scale models due to the reduction of overprediction. The variability of environmental space (E-space) differed for most of climatic variables between continental and biome-scale and the representation of the E-space by predictors differed significantly (t = 2.42, g.I. = 9, P < 0.05). Refining spatial scale, incorporating landscape variables and improving the quality of biological data are essential for improving model prediction for conservation purposes.
Resumo:
The high rate of amphibian endemism and the severe habitat modification in the Caribbean islands make them an ideal place to test if the current protected areas network might protect this group. In this study, we model distribution and map species richness of the 40 amphibian species from eastern Cuba with the objectives of identify hotspots, detect gaps in species representation in protected areas, and select additional areas to fill these gaps. We used two modeling methods, Maxent and Habitat Suitability Models, to reach a consensus distribution map for each species, then calculate species richness by combining specific models and finally performed gap analyses for species and hotspots. Our results showed that the models were robust enough to predict species distributions and that most of the amphibian hotspots were represented in reserves, but 50 percent of the species were incompletely covered and Eleutherodactylus rivularis was totally uncovered by the protected areas. We identified 1441 additional km2 (9.9% of the study area) that could be added to the current protected areas, allowing the representation of every species and all hotspots. Our results are relevant for the conservation planning in other Caribbean islands, since studies like this could contribute to fill the gaps in the existing protected areas and to design a future network. Both cases would benefit from modeling amphibian species distribution using available data, even if they are incomplete, rather than relying only in the protection of known or suspected hotspots.
Resumo:
The MIGCLIM R package is a function library for the open source R software that enables the implementation of species-specific dispersal constraints into projections of species distribution models under environmental change and/or landscape fragmentation scenarios. The model is based on a cellular automaton and the basic modeling unit is a cell that is inhabited or not. Model parameters include dispersal distance and kernel, long distance dispersal, barriers to dispersal, propagule production potential and habitat invasibility. The MIGCLIM R package has been designed to be highly flexible in the parameter values it accepts, and to offer good compatibility with existing species distribution modeling software. Possible applications include the projection of future species distributions under environmental change conditions and modeling the spread of invasive species.
Resumo:
Abstract : The existence of a causal relationship between the spatial distribution of living organisms and their environment, in particular climate, has been long recognized and is the central principle of biogeography. In turn, this recognition has led scientists to the idea of using the climatic, topographic, edaphic and biotic characteristics of the environment to predict its potential suitability for a given species or biological community. In this thesis, my objective is to contribute to the development of methodological improvements in the field of species distribution modeling. More precisely, the objectives are to propose solutions to overcome limitations of species distribution models when applied to conservation biology issues, or when .used as an assessment tool of the potential impacts of global change. The first objective of my thesis is to contribute to evidence the potential of species distribution models for conservation-related applications. I present a methodology to generate pseudo-absences in order to overcome the frequent lack of reliable absence data. I also demonstrate, both theoretically (simulation-based) and practically (field-based), how species distribution models can be successfully used to model and sample rare species. Overall, the results of this first part of the thesis demonstrate the strong potential of species distribution models as a tool for practical applications in conservation biology. The second objective this thesis is to contribute to improve .projections of potential climate change impacts on species distributions, and in particular for mountain flora. I develop and a dynamic model, MIGCLIM, that allows the implementation of dispersal limitations into classic species distribution models and present an application of this model to two virtual species. Given that accounting for dispersal limitations requires information on seed dispersal, distances, a general methodology to classify species into broad dispersal types is also developed. Finally, the M~GCLIM model is applied to a large number of species in a study area of the western Swiss Alps. Overall, the results indicate that while dispersal limitations can have an important impact on the outcome of future projections of species distributions under climate change scenarios, estimating species threat levels (e.g. species extinction rates) for a mountainous areas of limited size (i.e. regional scale) can also be successfully achieved when considering dispersal as unlimited (i.e. ignoring dispersal limitations, which is easier from a practical point of view). Finally, I present the largest fine scale assessment of potential climate change impacts on mountain vegetation that has been carried-out to date. This assessment involves vegetation from 12 study areas distributed across all major western and central European mountain ranges. The results highlight that some mountain ranges (the Pyrenees and the Austrian Alps) are expected to be more affected by climate change than others (Norway and the Scottish Highlands). The results I obtain in this study also indicate that the threat levels projected by fine scale models are less severe than those derived from coarse scale models. This result suggests that some species could persist in small refugias that are not detected by coarse scale models. Résumé : L'existence d'une relation causale entre la répartition des espèces animales et végétales et leur environnement, en particulier le climat, a été mis en évidence depuis longtemps et est un des principes centraux en biogéographie. Ce lien a naturellement conduit à l'idée d'utiliser les caractéristiques climatiques, topographiques, édaphiques et biotiques de l'environnement afin d'en prédire la qualité pour une espèce ou une communauté. Dans ce travail de thèse, mon objectif est de contribuer au développement d'améliorations méthodologiques dans le domaine de la modélisation de la distribution d'espèces dans le paysage. Plus précisément, les objectifs sont de proposer des solutions afin de surmonter certaines limitations des modèles de distribution d'espèces dans des applications pratiques de biologie de la conservation ou dans leur utilisation pour évaluer l'impact potentiel des changements climatiques sur l'environnement. Le premier objectif majeur de mon travail est de contribuer à démontrer le potentiel des modèles de distribution d'espèces pour des applications pratiques en biologie de la conservation. Je propose une méthode pour générer des pseudo-absences qui permet de surmonter le problème récurent du manque de données d'absences fiables. Je démontre aussi, de manière théorique (par simulation) et pratique (par échantillonnage de terrain), comment les modèles de distribution d'espèces peuvent être utilisés pour modéliser et améliorer l'échantillonnage des espèces rares. Ces résultats démontrent le potentiel des modèles de distribution d'espèces comme outils pour des applications de biologie de la conservation. Le deuxième objectif majeur de ce travail est de contribuer à améliorer les projections d'impacts potentiels des changements climatiques sur la flore, en particulier dans les zones de montagnes. Je développe un modèle dynamique de distribution appelé MigClim qui permet de tenir compte des limitations de dispersion dans les projections futures de distribution potentielle d'espèces, et teste son application sur deux espèces virtuelles. Vu que le fait de prendre en compte les limitations dues à la dispersion demande des données supplémentaires importantes (p.ex. la distance de dispersion des graines), ce travail propose aussi une méthode de classification simplifiée des espèces végétales dans de grands "types de disperseurs", ce qui permet ainsi de d'obtenir de bonnes approximations de distances de dispersions pour un grand nombre d'espèces. Finalement, j'applique aussi le modèle MIGCLIM à un grand nombre d'espèces de plantes dans une zone d'études des pré-Alpes vaudoises. Les résultats montrent que les limitations de dispersion peuvent avoir un impact considérable sur la distribution potentielle d'espèces prédites sous des scénarios de changements climatiques. Cependant, quand les modèles sont utilisés pour évaluer les taux d'extinction d'espèces dans des zones de montages de taille limitée (évaluation régionale), il est aussi possible d'obtenir de bonnes approximations en considérant la dispersion des espèces comme illimitée, ce qui est nettement plus simple d'un point dé vue pratique. Pour terminer je présente la plus grande évaluation à fine échelle d'impact potentiel des changements climatiques sur la flore des montagnes conduite à ce jour. Cette évaluation englobe 12 zones d'études réparties sur toutes les chaines de montages principales d'Europe occidentale et centrale. Les résultats montrent que certaines chaines de montagnes (les Pyrénées et les Alpes Autrichiennes) sont projetées comme plus sensibles aux changements climatiques que d'autres (les Alpes Scandinaves et les Highlands d'Ecosse). Les résultats obtenus montrent aussi que les modèles à échelle fine projettent des impacts de changement climatiques (p. ex. taux d'extinction d'espèces) moins sévères que les modèles à échelle large. Cela laisse supposer que les modèles a échelle fine sont capables de modéliser des micro-niches climatiques non-détectées par les modèles à échelle large.
Resumo:
Fragilariopsis kerguelensis, a dominant diatom species throughout the Antarctic Circumpolar Current, is coined to be one of the main drivers of the biological silicate pump. Here, we study the distribution of this important species and expected consequences of climate change upon it, using correlative species distribution modeling and publicly available presence-only data. As experience with SDM is scarce for marine phytoplankton, this also serves as a pilot study for this organism group. We used the maximum entropy method to calculate distribution models for the diatom F. kerguelensis based on yearly and monthly environmental data (sea surface temperature, salinity, nitrate and silicate concentrations). Observation data were harvested from GBIF and the Global Diatom Database, and for further analyses also from the Hustedt Diatom Collection (BRM). The models were projected on current yearly and seasonal environmental data to study current distribution and its seasonality. Furthermore, we projected the seasonal model on future environmental data obtained from climate models for the year 2100. Projected on current yearly averaged environmental data, all models showed similar distribution patterns for F. kerguelensis. The monthly model showed seasonality, for example, a shift of the southern distribution boundary toward the north in the winter. Projections on future scenarios resulted in a moderately to negligibly shrinking distribution area and a change in seasonality. We found a substantial bias in the publicly available observation datasets, which could be reduced by additional observation records we obtained from the Hustedt Diatom Collection. Present-day distribution patterns inferred from the models coincided well with background knowledge and previous reports about F. kerguelensis distribution, showing that maximum entropy-based distribution models are suitable to map distribution patterns for oceanic planktonic organisms. Our scenario projections indicate moderate effects of climate change upon the biogeography of F. kerguelensis.
Resumo:
Information to guide decision making is especially urgent in human dominated landscapes in the tropics, where urban and agricultural frontiers are still expanding in an unplanned manner. Nevertheless, most studies that have investigated the influence of landscape structure on species distribution have not considered the heterogeneity of altered habitats of the matrix, which is usually high in human dominated landscapes. Using the distribution of small mammals in forest remnants and in the four main altered habitats in an Atlantic forest landscape, we investigated 1) how explanatory power of models describing species distribution in forest remnants varies between landscape structure variables that do or do not incorporate matrix quality and 2) the importance of spatial scale for analyzing the influence of landscape structure. We used standardized sampling in remnants and altered habitats to generate two indices of habitat quality, corresponding to the abundance and to the occurrence of small mammals. For each remnant, we calculated habitat quantity and connectivity in different spatial scales, considering or not the quality of surrounding habitats. The incorporation of matrix quality increased model explanatory power across all spatial scales for half the species that occurred in the matrix, but only when taking into account the distance between habitat patches (connectivity). These connectivity models were also less affected by spatial scale than habitat quantity models. The few consistent responses to the variation in spatial scales indicate that despite their small size, small mammals perceive landscape features at large spatial scales. Matrix quality index corresponding to species occurrence presented a better or similar performance compared to that of species abundance. Results indicate the importance of the matrix for the dynamics of fragmented landscapes and suggest that relatively simple indices can improve our understanding of species distribution, and could be applied in modeling, monitoring and managing complex tropical landscapes.
Resumo:
Species distribution modeling has relevant implications for the studies of biodiversity, decision making about conservation and knowledge about ecological requirements of the species. The aim of this study was to evaluate if the use of forest inventories can improve the estimation of occurrence probability, identify the limits of the potential distribution and habitat preference of a group of timber tree species. The environmental predictor variables were: elevation, slope, aspect, normalized difference vegetation index (NDVI) and height above the nearest drainage (HAND). To estimate the distribution of species we used the maximum entropy method (Maxent). In comparison with a random distribution, using topographic variables and vegetation index as features, the Maxent method predicted with an average accuracy of 86% the geographical distribution of studied species. The altitude and NDVI were the most important variables. There were limitations to the interpolation of the models for non-sampled locations and that are outside of the elevation gradient associated with the occurrence data in approximately 7% of the basin area. Ceiba pentandra (samaúma), Castilla ulei (caucho) and Hura crepitans (assacu) is more likely to occur in nearby water course areas. Clarisia racemosa (guariúba), Amburana acreana (cerejeira), Aspidosperma macrocarpon (pereiro), Apuleia leiocarpa (cumaru cetim), Aspidosperma parvifolium (amarelão) and Astronium lecointei (aroeira) can also occur in upland forest and well drained soils. This modeling approach has potential for application on other tropical species still less studied, especially those that are under pressure from logging.
Resumo:
1. Species distribution modelling is used increasingly in both applied and theoretical research to predict how species are distributed and to understand attributes of species' environmental requirements. In species distribution modelling, various statistical methods are used that combine species occurrence data with environmental spatial data layers to predict the suitability of any site for that species. While the number of data sharing initiatives involving species' occurrences in the scientific community has increased dramatically over the past few years, various data quality and methodological concerns related to using these data for species distribution modelling have not been addressed adequately. 2. We evaluated how uncertainty in georeferences and associated locational error in occurrences influence species distribution modelling using two treatments: (1) a control treatment where models were calibrated with original, accurate data and (2) an error treatment where data were first degraded spatially to simulate locational error. To incorporate error into the coordinates, we moved each coordinate with a random number drawn from the normal distribution with a mean of zero and a standard deviation of 5 km. We evaluated the influence of error on the performance of 10 commonly used distributional modelling techniques applied to 40 species in four distinct geographical regions. 3. Locational error in occurrences reduced model performance in three of these regions; relatively accurate predictions of species distributions were possible for most species, even with degraded occurrences. Two species distribution modelling techniques, boosted regression trees and maximum entropy, were the best performing models in the face of locational errors. The results obtained with boosted regression trees were only slightly degraded by errors in location, and the results obtained with the maximum entropy approach were not affected by such errors. 4. Synthesis and applications. To use the vast array of occurrence data that exists currently for research and management relating to the geographical ranges of species, modellers need to know the influence of locational error on model quality and whether some modelling techniques are particularly robust to error. We show that certain modelling techniques are particularly robust to a moderate level of locational error and that useful predictions of species distributions can be made even when occurrence data include some error.
Resumo:
Species distribution models (SDMs) are widely used to explain and predict species ranges and environmental niches. They are most commonly constructed by inferring species' occurrence-environment relationships using statistical and machine-learning methods. The variety of methods that can be used to construct SDMs (e.g. generalized linear/additive models, tree-based models, maximum entropy, etc.), and the variety of ways that such models can be implemented, permits substantial flexibility in SDM complexity. Building models with an appropriate amount of complexity for the study objectives is critical for robust inference. We characterize complexity as the shape of the inferred occurrence-environment relationships and the number of parameters used to describe them, and search for insights into whether additional complexity is informative or superfluous. By building 'under fit' models, having insufficient flexibility to describe observed occurrence-environment relationships, we risk misunderstanding the factors shaping species distributions. By building 'over fit' models, with excessive flexibility, we risk inadvertently ascribing pattern to noise or building opaque models. However, model selection can be challenging, especially when comparing models constructed under different modeling approaches. Here we argue for a more pragmatic approach: researchers should constrain the complexity of their models based on study objective, attributes of the data, and an understanding of how these interact with the underlying biological processes. We discuss guidelines for balancing under fitting with over fitting and consequently how complexity affects decisions made during model building. Although some generalities are possible, our discussion reflects differences in opinions that favor simpler versus more complex models. We conclude that combining insights from both simple and complex SDM building approaches best advances our knowledge of current and future species ranges.
Integrating species distribution models (SDMs) and phylogeography for two species of Alpine Primula.
Resumo:
The major intention of the present study was to investigate whether an approach combining the use of niche-based palaeodistribution modeling and phylo-geography would support or modify hypotheses about the Quaternary distributional history derived from phylogeographic methods alone. Our study system comprised two closely related species of Alpine Primula. We used species distribution models based on the extant distribution of the species and last glacial maximum (LGM) climate models to predict the distribution of the two species during the LGM. Phylogeographic data were generated using amplified fragment length polymorphisms (AFLPs). In Primula hirsuta, models of past distribution and phylogeographic data are partly congruent and support the hypothesis of widespread nunatak survival in the Central Alps. Species distribution models (SDMs) allowed us to differentiate between alpine regions that harbor potential nunatak areas and regions that have been colonized from other areas. SDMs revealed that diversity is a good indicator for nunataks, while rarity is a good indicator for peripheral relict populations that were not source for the recolonization of the inner Alps. In P. daonensis, palaeo-distribution models and phylogeographic data are incongruent. Besides the uncertainty inherent to this type of modeling approach (e.g., relatively coarse 1-km grain size), disagreement of models and data may partly be caused by shifts of ecological niche in both species. Nevertheless, we demonstrate that the combination of palaeo-distribution modeling with phylogeographical approaches provides a more differentiated picture of the distributional history of species and partly supports (P. hirsuta) and partly modifies (P. daonensis and P. hirsuta) hypotheses of Quaternary distributional history. Some of the refugial area indicated by palaeodistribution models could not have been identified with phylogeographic data.
Resumo:
1. Species distribution models are increasingly used to address conservation questions, so their predictive capacity requires careful evaluation. Previous studies have shown how individual factors used in model construction can affect prediction. Although some factors probably have negligible effects compared to others, their relative effects are largely unknown. 2. We introduce a general "virtual ecologist" framework to study the relative importance of factors involved in the construction of species distribution models. 3. We illustrate the framework by examining the relative importance of five key factors-a missing covariate, spatial autocorrelation due to a dispersal process in presences/absences, sample size, sampling design and modeling technique-in a real study framework based on plants in a mountain landscape at regional scale, and show that, for the parameter values considered here, most of the variation in prediction accuracy is due to sample size and modeling technique. Contrary to repeatedly reported concerns, spatial autocorrelation has only comparatively small effects. 4. This study shows the importance of using a nested statistical framework to evaluate the relative effects of factors that may affect species distribution models.
Resumo:
Maximum entropy modeling (Maxent) is a widely used algorithm for predicting species distributions across space and time. Properly assessing the uncertainty in such predictions is non-trivial and requires validation with independent datasets. Notably, model complexity (number of model parameters) remains a major concern in relation to overfitting and, hence, transferability of Maxent models. An emerging approach is to validate the cross-temporal transferability of model predictions using paleoecological data. In this study, we assess the effect of model complexity on the performance of Maxent projections across time using two European plant species (Alnus giutinosa (L.) Gaertn. and Corylus avellana L) with an extensive late Quaternary fossil record in Spain as a study case. We fit 110 models with different levels of complexity under present time and tested model performance using AUC (area under the receiver operating characteristic curve) and AlCc (corrected Akaike Information Criterion) through the standard procedure of randomly partitioning current occurrence data. We then compared these results to an independent validation by projecting the models to mid-Holocene (6000 years before present) climatic conditions in Spain to assess their ability to predict fossil pollen presence-absence and abundance. We find that calibrating Maxent models with default settings result in the generation of overly complex models. While model performance increased with model complexity when predicting current distributions, it was higher with intermediate complexity when predicting mid-Holocene distributions. Hence, models of intermediate complexity resulted in the best trade-off to predict species distributions across time. Reliable temporal model transferability is especially relevant for forecasting species distributions under future climate change. Consequently, species-specific model tuning should be used to find the best modeling settings to control for complexity, notably with paleoecological data to independently validate model projections. For cross-temporal projections of species distributions for which paleoecological data is not available, models of intermediate complexity should be selected.
Resumo:
Nowadays, Species Distribution Models (SDMs) are a widely used tool. Using different statistical approaches these models reconstruct the realized niche of a species using presence data and a set of variables, often topoclimatic. There utilization range is quite large from understanding single species requirements, to the creation of nature reserve based on species hotspots, or modeling of climate change impact, etc... Most of the time these models are using variables at a resolution of 50km x 50km or 1 km x 1 km. However in some cases these models are used with resolutions below the kilometer scale and thus called high resolution models (100 m x 100 m or 25 m x 25 m). Quite recently a new kind of data has emerged enabling precision up to lm x lm and thus allowing very high resolution modeling. However these new variables are very costly and need an important amount of time to be processed. This is especially the case when these variables are used in complex calculation like models projections over large areas. Moreover the importance of very high resolution data in SDMs has not been assessed yet and is not well understood. Some basic knowledge on what drive species presence-absences is still missing. Indeed, it is not clear whether in mountain areas like the Alps coarse topoclimatic gradients are driving species distributions or if fine scale temperature or topography are more important or if their importance can be neglected when balance to competition or stochasticity. In this thesis I investigated the importance of very high resolution data (2-5m) in species distribution models using either very high resolution topographic, climatic or edaphic variables over a 2000m elevation gradient in the Western Swiss Alps. I also investigated more local responses of these variables for a subset of species living in this area at two precise elvation belts. During this thesis I showed that high resolution data necessitates very good datasets (species and variables for the models) to produce satisfactory results. Indeed, in mountain areas, temperature is the most important factor driving species distribution and needs to be modeled at very fine resolution instead of being interpolated over large surface to produce satisfactory results. Despite the instinctive idea that topographic should be very important at high resolution, results are mitigated. However looking at the importance of variables over a large gradient buffers the importance of the variables. Indeed topographic factors have been shown to be highly important at the subalpine level but their importance decrease at lower elevations. Wether at the mountane level edaphic and land use factors are more important high resolution topographic data is more imporatant at the subalpine level. Finally the biggest improvement in the models happens when edaphic variables are added. Indeed, adding soil variables is of high importance and variables like pH are overpassing the usual topographic variables in SDMs in term of importance in the models. To conclude high resolution is very important in modeling but necessitate very good datasets. Only increasing the resolution of the usual topoclimatic predictors is not sufficient and the use of edaphic predictors has been highlighted as fundamental to produce significantly better models. This is of primary importance, especially if these models are used to reconstruct communities or as basis for biodiversity assessments. -- Ces dernières années, l'utilisation des modèles de distribution d'espèces (SDMs) a continuellement augmenté. Ces modèles utilisent différents outils statistiques afin de reconstruire la niche réalisée d'une espèce à l'aide de variables, notamment climatiques ou topographiques, et de données de présence récoltées sur le terrain. Leur utilisation couvre de nombreux domaines allant de l'étude de l'écologie d'une espèce à la reconstruction de communautés ou à l'impact du réchauffement climatique. La plupart du temps, ces modèles utilisent des occur-rences issues des bases de données mondiales à une résolution plutôt large (1 km ou même 50 km). Certaines bases de données permettent cependant de travailler à haute résolution, par conséquent de descendre en dessous de l'échelle du kilomètre et de travailler avec des résolutions de 100 m x 100 m ou de 25 m x 25 m. Récemment, une nouvelle génération de données à très haute résolution est apparue et permet de travailler à l'échelle du mètre. Les variables qui peuvent être générées sur la base de ces nouvelles données sont cependant très coûteuses et nécessitent un temps conséquent quant à leur traitement. En effet, tout calcul statistique complexe, comme des projections de distribution d'espèces sur de larges surfaces, demande des calculateurs puissants et beaucoup de temps. De plus, les facteurs régissant la distribution des espèces à fine échelle sont encore mal connus et l'importance de variables à haute résolution comme la microtopographie ou la température dans les modèles n'est pas certaine. D'autres facteurs comme la compétition ou la stochasticité naturelle pourraient avoir une influence toute aussi forte. C'est dans ce contexte que se situe mon travail de thèse. J'ai cherché à comprendre l'importance de la haute résolution dans les modèles de distribution d'espèces, que ce soit pour la température, la microtopographie ou les variables édaphiques le long d'un important gradient d'altitude dans les Préalpes vaudoises. J'ai également cherché à comprendre l'impact local de certaines variables potentiellement négligées en raison d'effets confondants le long du gradient altitudinal. Durant cette thèse, j'ai pu monter que les variables à haute résolution, qu'elles soient liées à la température ou à la microtopographie, ne permettent qu'une amélioration substantielle des modèles. Afin de distinguer une amélioration conséquente, il est nécessaire de travailler avec des jeux de données plus importants, tant au niveau des espèces que des variables utilisées. Par exemple, les couches climatiques habituellement interpolées doivent être remplacées par des couches de température modélisées à haute résolution sur la base de données de terrain. Le fait de travailler le long d'un gradient de température de 2000m rend naturellement la température très importante au niveau des modèles. L'importance de la microtopographie est négligeable par rapport à la topographie à une résolution de 25m. Cependant, lorsque l'on regarde à une échelle plus locale, la haute résolution est une variable extrêmement importante dans le milieu subalpin. À l'étage montagnard par contre, les variables liées aux sols et à l'utilisation du sol sont très importantes. Finalement, les modèles de distribution d'espèces ont été particulièrement améliorés par l'addition de variables édaphiques, principalement le pH, dont l'importance supplante ou égale les variables topographique lors de leur ajout aux modèles de distribution d'espèces habituels.