990 resultados para Spatial variations
Resumo:
The forest has a crucial ecological role and the continuous forest loss can cause colossal effects on the environment. As Armenia is one of the low forest covered countries in the world, this problem is more critical. Continuous forest disturbances mainly caused by illegal logging started from the early 1990s had a huge damage on the forest ecosystem by decreasing the forest productivity and making more areas vulnerable to erosion. Another aspect of the Armenian forest is the lack of continuous monitoring and absence of accurate estimation of the level of cuts in some years. In order to have insight about the forest and the disturbances in the long period of time we used Landsat TM/ETM + images. Google Earth Engine JavaScript API was used, which is an online tool enabling the access and analysis of a great amount of satellite imagery. To overcome the data availability problem caused by the gap in the Landsat series in 1988- 1998, extensive cloud cover in the study area and the missing scan lines, we used pixel based compositing for the temporal window of leaf on vegetation (June-late September). Subsequently, pixel based linear regression analyses were performed. Vegetation indices derived from the 10 biannual composites for the years 1984-2014 were used for trend analysis. In order to derive the disturbances only in forests, forest cover layer was aggregated and the original composites were masked. It has been found, that around 23% of forests were disturbed during the study period.
Resumo:
Lakes play an important role in biogeochemical, ecological and hydrological processes in the river-floodplain system. The aim of this study was to evaluate the dynamics of the limnological conditions of Catalão Lake, an Amazon floodplain lake. Thus, some of the main limnological environment variables (O2, temperature, pH, nutrient, electrical conductivity) of the Catalão Lake were analyzed under temporal and spacial scales. The study was conducted between November/2004 and August/2005. Sampling excursion were carried out every three months; one excursion for each of the four different hydrological periods (low water, rising water, high water and falling water). Sampling points were chosen so that it could be obtained a gradient of the distance from Negro River. Limnological profiles in Catalão Lake showed generally acidic to slightly alcaline water, with low levels of dissolved oxygen and low concentrations of soluble reactive phosphorous. The Negro River seems to exert the main influence during the rising water period, while the Solimões River is the principal controlling river during peak water. The Principal Component Analysis (PCA) grouped the seasonal collections by hydrological period, showing the formation of a north-south spatial gradient within the lake in relation to the limnological variables. Multivariate dispersion analysis based on distance-to-centroid method demonstrated an increase in similarity over the course of the hydrological cycle, as the lake was inundated in response to the flood pulse of the main river channels. However, the largest spatial homogeneity in the lake was observed in the epilimnion layer, during the falling water period. The daily analysis of variation indicated an oligomitic pattern during the years in which the lake was permanently connected to the Negro River. Although Catalão Lake receives large quantities of both black water from the Negro River and sediment-filled water from the Solimões River, the physical and chemical characteristics of the lake are more similar to those of the Solimões (várzea lake) than the Negro (blackwater lake).
Resumo:
Temporal and spatial variations in species composition and vertical distribution of macroalgal communities growing on mangrove trees were analyzed bimonthly in the Ilha do Cardoso State Park, São Paulo state (25°03'S and 47°55'W), Southeastern Brazil. The macroalgal communities from mangroves of Perequê and Sítio Grande rivers comprised 10 and 18 taxa respectively. Bostrychia radicans (Mont.) Mont. and B. calliptera (Mont.) Mont. were the predominant taxa, present almost throughout the year and in all the sites studied. The species composition of macroalgal communities from both mangroves presented temporal and spatial variations related to environmental factors. The highest number of taxa was observed during colder, drier months, coinciding with the highest means of high water neap and short periods of continuous emersion (April to August). Some mangrove algae such as B. calliptera, Rhizoclonium spp., Caloglossa spp., and Boodleopsis pusilla (Collins) W. Taylor, Joly et Bernatowicz showed a high degree of tolerance to desiccation, being able to tolerate continuous emersion up to six days. The spatial variations in species composition were related to light, as observed in Catenella caespitosa (Withering) L. Irvine, which occurred in well-lit sites. No pattern of vertical zonation was observed, since Rhizoclonium spp., B. radicans, and B. calliptera occur over the entire vertical range. Variations in the range of vertical distribution of macroalgae of Perequê mangrove were mainly related to the variations in the tidal levels (mean high water neap and/or mean high water spring) while those observed in Sítio Grande mangrove were related to salinity variations, except for B. calliptera and Caloglossa spp. related to tidal levels and high irradiance, respectively.
Resumo:
We examined the relationships between environmental variations in lotic ecosystems with the seasonal dynamics of macroalgae communities at different spatial scales: drainage basin of two rivers (Rio das Pedras and Rio Marrecas), shading (open and shaded stream segments), mesohabitat (riffles and pools), and microhabitats. Data collections were made on a monthly basis between January and December/2007. A total of 16 taxa were encountered (13 species and 3 vegetative groups). All of the biotic parameters (richness, abundance, diversity, equitability, and dominance) were found to be highly variable at all of the spatial scales evaluated. On the other hand, abiotic variables demonstrated differences only at mesohabitat (in terms of current velocity) and shaded habitat (in terms of irradiance) scales. The seasonality of the macroalgae community structure was strongly influenced by microhabitat variables (current velocity, substrate H', and irradiance), demonstrating their importance over time and at different scales. Regional variables (temperature, oxygen saturation, specific conductance, pH, and turbidity) were found to have little influence on the temporal dynamics of the macroalgae communities evaluated.
Resumo:
This paper investigates the impact of policies to promote the adoption of LEED-certified buildings across CBSA in the United States. Drawing upon a unique database that combines data from a large number of sources and using a number of regression procedures, the determinants of the proportion LEED-certified space for more than 170 CBSA in the US is modeled. LEED-certified space still accounts for a relatively small proportion of commercial stock in all markets. The average proportion is less than 1%. There is no conclusive evidence of a positive impact of policy intervention on the levels of LEED-certified space. However, after accounting for bias introduced by non-random assignment of policies, we find preliminary evidence of a positive impact of city-level green building incentives. There is a significant positive association between market size and indicators of economic vitality on proportions of LEED-certified space.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The wetlands of south-central Nebraska’s Rainwater Basin region are considered of international importance as a habitat for millions of migratory birds, but are being endangered by agricultural practices. The Rainwater Basin extends across 17 counties and covers 4,000 square miles. The purpose of this study was to assemble baseline chemical data for several representative wetlands across the Rainwater Basin region, and determine the use of these chemical data for investigating groundwater recharge. Eight representative wetlands were chosen across the Rainwater Basin to monitor surface and groundwater chemistry. At each site, a shallow well and deep well were installed and sampled once in the summer of 2009 and again in the spring of 2010. Wetland surface water was sampled monthly from April, 2009 to May, 2010. Waters were analyzed for major ions, nutrients, pesticides and oxygen-18 and deuterium isotopes at the University of Nebraska Water Sciences Laboratory. Geochemical analysis of surface waters presents a range of temporal and spatial variations. Wetlands had variable water volumes, isotopic compositions, ion chemistries and agricultural contaminant levels throughout the year and, except for a few trends, theses variations cannot be predicted with certainty year-to-year or wetland-to-wetland. Isotopic compositions showed evaporation was a contributor to water loss, and thus, did impact water chemistry. Surface water nitrate concentrations ranged from <0.10 to 4.04 mg/L. The nitrate levels are much higher in the groundwater, ranging from <0.10 to 18.4 mg/L, and are of concern because they are found above the maximum contaminant level (MCL) of 10 mg/L. Atrazine concentrations in surface waters ranged from <0.05 to 10.3 ppb. Groundwater atrazine concentrations ranged from <0.05 to 0.28 ppb. The high atrazine concentrations in surface waters are of concern as they are above the MCL of 3 ppb, and the highest levels occur during the spring bird migration. Most sampled groundwaters had detectable tritium indicating a mix of modern (<5 to 10 years old) and submodern (older than 1950s) recharge. The groundwater also had differences in chemical and isotope composition, and in some cases, increased nitrate concentrations, between the two sampling periods. Modern groundwater tritium ages and changes in groundwater chemical and isotopic compositions may indicate connections with surface waters in the Rainwater Basin.
Resumo:
Here, the pelagic carbonate system and the ?13C signature of dissolved inorganic carbonate (DIC) were investigated in a tidal basin of the southern North Sea, the Jade Bay, with respect to tidal cycles and a transect towards the North Sea in winter time (January and November, 2010). Physical parameters, major and trace elements, and nutrient concentrations were considered, too. Primary production and pelagic organic matter respiration were negligible during winter time. Both, the compositional variations on the transects as well as during the tidal cycles indicate the mixing of North Sea with fresh water. The combined spatial co-variations of different parameters indicate an introduction of fresh water that was enriched in DI12C, metabolites (e.g., ammonia), protons, and dissolved redox-sensitive elements (e.g., Mn2+). During the January campaign, the discharge via the flood gates was limited due to ice cover of the hinterland drainage ditches, allowing for an observation of tidal variations without significant mixing contributions from surface water discharges. Considering a binary mixing model with North Sea and fresh water as end-members, the extrapolated fresh water end-member composition for this campaign is estimated to contain about 3.8 mmol/kg DIC , and enhanced concentrations of NH4+, Mn2+, and protons compared to North Sea water. The fast temporal response of dissolved geochemical tracers on tidal variations in the Jade Bay indicates a continuous supply of a fresh water component. The measured composition of fresh waters entering the Jade Bay via flood gates (end of October, 2010) did not match the values estimated by the binary mixing model. Therefore, the overall fresh water component likely is a mixture between sources originating from flood gates and (in January) dominating submarine groundwater discharge entering the Jade Bay. This model is consistent with the results obtained during the November campaign, when a more important contribution from flood gates is expected and a more variable fresh water end-member is estimated. The co-variations of the concentrations and the stable carbon isotope composition of DIC are applied to evaluate possible superimposed sink-source-transformation processes in the coastal waters and a general co-variation scheme is suggested.
Resumo:
Paper presented at the Western Economics Association meetings, June 26, 1976.
Resumo:
With the aim of analyzing the complex physical and biogeochemical interactions at high temporal and spatial resolution in the complex estuarine waters of Alfacs Bay, a beam attenuation-based approach was used as optical proxy of different biogeochemical variables. Thus, the dataset contains the attenuation proxies as well as laboratory results from the analysis of water samples, which were used to validate our approach. In addition, the major physical forcing in the Bay was also measured.
Resumo:
Methane production by methanogens in mangrove sediments is known to contribute significantly to global warming, but studies on the shift of methanogenic community in response to anthropogenic contaminations were still limited. In this study, the effect of anthropogenic activities in the mangrove sediments along the north and south coastlines of Singapore were investigated by pyrosequencing of the mcrA gene. Our results showed that hydrogenotrophic, acetoclastic and methylotrophic methanogens coexist in the sediments. The predominance of the methylotrophic Methanosarcinales reflects the potential for high methane production as well as the possible availability of low acetate and high methylated C-1 compounds as substrates. A decline in the number of acetoclastic/methylotrophic methanogens in favor of hydrogenotrophic methanogens was observed along a vertical profile in Sungei Changi, which was contaminated by heavy metals. The diversity of methanogens in the various contaminated stations was significantly different from that in a pristine St. John’s Island. The spatial variation in the methanogenic communities among the different stations was more distinct than those along the vertical profiles at each station. We suggest that the overall heterogeneity of the methanogenic communities residing in the tropical mangrove sediments might be due to the accumulated effects of temperature and concentrations of nitrate, cobalt, and nickel.
Resumo:
A procedure has been proposed by Ciotti and Bricaud (2006) to retrieve spectral absorption coefficients of phytoplankton and colored detrital matter (CDM) from satellite radiance measurements. This was also the first procedure to estimate a size factor for phytoplankton, based on the shape of the retrieved algal absorption spectrum, and the spectral slope of CDM absorption. Applying this method to the global ocean color data set acquired by SeaWiFS over twelve years (1998-2009), allowed for a comparison of the spatial variations of chlorophyll concentration ([Chl]), algal size factor (S-f), CDM absorption coefficient (a(cdm)) at 443 nm, and spectral slope of CDM absorption (S-cdm). As expected, correlations between the derived parameters were characterized by a large scatter at the global scale. We compared temporal variability of the spatially averaged parameters over the twelve-year period for three oceanic areas of biogeochemical importance: the Eastern Equatorial Pacific, the North Atlantic and the Mediterranean Sea. In all areas, both S-f and a(cdm)(443) showed large seasonal and interannual variations, generally correlated to those of algal biomass. The CDM maxima appeared in some occasions to last longer than those of [Chl]. The spectral slope of CDM absorption showed very large seasonal cycles consistent with photobleaching, challenging the assumption of a constant slope commonly used in bio-optical models. In the Equatorial Pacific, the seasonal cycles of [Chl], S-f, a(cdm)(443) and S-cdm, as well as the relationships between these parameters, were strongly affected by the 1997-98 El Ni o/La Ni a event.
Resumo:
Psecas chapoda, a neotropical jumping spider strictly associated with the terrestrial bromeliad Bromelia balansae in cerrados and semi-deciduous forests in South America, effectively contributes to plant nutrition and growth. In this study, our goal was to investigate if spider density caused spatial variations in the strength of this spider-plant mutualism. We found a positive significant relationship between spider density and delta N-15 values for bromeliad leaves in different forest fragments. Open grassland Bromeliads were associated with spiders and had higher delta N-15 values compared to forest bromeliads. Although forest bromeliads had no association with spiders their total N concentrations were higher. These results suggest that bromeliad nutrition is likely more litter-based in forests and more spider-based in open grasslands. This study is one of the few to show nutrient provisioning and conditionality in a spider-plant system. (c) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Anaemia is known to have an impact on child development and mortality and is a severe public health problem in most countries in sub-Saharan Africa. We investigated the consistency between ecological and individual-level approaches to anaemia mapping by building spatial anaemia models for children aged ≤15 years using different modelling approaches. We aimed to (i) quantify the role of malnutrition, malaria, Schistosoma haematobium and soil-transmitted helminths (STHs) in anaemia endemicity; and (ii) develop a high resolution predictive risk map of anaemia for the municipality of Dande in northern Angola. We used parasitological survey data for children aged ≤15 years to build Bayesian geostatistical models of malaria (PfPR≤15), S. haematobium, Ascaris lumbricoides and Trichuris trichiura and predict small-scale spatial variations in these infections. Malnutrition, PfPR≤15, and S. haematobium infections were significantly associated with anaemia risk. An estimated 12.5%, 15.6% and 9.8% of anaemia cases could be averted by treating malnutrition, malaria and S. haematobium, respectively. Spatial clusters of high risk of anaemia (>86%) were identified. Using an individual-level approach to anaemia mapping at a small spatial scale, we found that anaemia in children aged ≤15 years is highly heterogeneous and that malnutrition and parasitic infections are important contributors to the spatial variation in anaemia risk. The results presented in this study can help inform the integration of the current provincial malaria control programme with ancillary micronutrient supplementation and control of neglected tropical diseases such as urogenital schistosomiasis and STH infections.