973 resultados para Spatial analysis of submerged macrophytes
Resumo:
OBJECTIVE: To estimate the spatial intensity of urban violence events using wavelet-based methods and emergency room data. METHODS: Information on victims attended at the emergency room of a public hospital in the city of São Paulo, Southeastern Brazil, from January 1, 2002 to January 11, 2003 were obtained from hospital records. The spatial distribution of 3,540 events was recorded and a uniform random procedure was used to allocate records with incomplete addresses. Point processes and wavelet analysis technique were used to estimate the spatial intensity, defined as the expected number of events by unit area. RESULTS: Of all georeferenced points, 59% were accidents and 40% were assaults. There is a non-homogeneous spatial distribution of the events with high concentration in two districts and three large avenues in the southern area of the city of São Paulo. CONCLUSIONS: Hospital records combined with methodological tools to estimate intensity of events are useful to study urban violence. The wavelet analysis is useful in the computation of the expected number of events and their respective confidence bands for any sub-region and, consequently, in the specification of risk estimates that could be used in decision-making processes for public policies.
Resumo:
OBJECTIVE: To estimate the spatial intensity of urban violence events using wavelet-based methods and emergency room data. METHODS: Information on victims attended at the emergency room of a public hospital in the city of São Paulo, Southeastern Brazil, from January 1, 2002 to January 11, 2003 were obtained from hospital records. The spatial distribution of 3,540 events was recorded and a uniform random procedure was used to allocate records with incomplete addresses. Point processes and wavelet analysis technique were used to estimate the spatial intensity, defined as the expected number of events by unit area. RESULTS: Of all georeferenced points, 59% were accidents and 40% were assaults. There is a non-homogeneous spatial distribution of the events with high concentration in two districts and three large avenues in the southern area of the city of São Paulo. CONCLUSIONS: Hospital records combined with methodological tools to estimate intensity of events are useful to study urban violence. The wavelet analysis is useful in the computation of the expected number of events and their respective confidence bands for any sub-region and, consequently, in the specification of risk estimates that could be used in decision-making processes for public policies.
Resumo:
OBJECTIVE: To identify clusters of the major occurrences of leprosy and their associated socioeconomic and demographic factors. METHODS: Cases of leprosy that occurred between 1998 and 2007 in São José do Rio Preto (southeastern Brazil) were geocodified and the incidence rates were calculated by census tract. A socioeconomic classification score was obtained using principal component analysis of socioeconomic variables. Thematic maps to visualize the spatial distribution of the incidence of leprosy with respect to socioeconomic levels and demographic density were constructed using geostatistics. RESULTS: While the incidence rate for the entire city was 10.4 cases per 100,000 inhabitants annually between 1998 and 2007, the incidence rates of individual census tracts were heterogeneous, with values that ranged from 0 to 26.9 cases per 100,000 inhabitants per year. Areas with a high leprosy incidence were associated with lower socioeconomic levels. There were identified clusters of leprosy cases, however there was no association between disease incidence and demographic density. There was a disparity between the places where the majority of ill people lived and the location of healthcare services. CONCLUSIONS: The spatial analysis techniques utilized identified the poorer neighborhoods of the city as the areas with the highest risk for the disease. These data show that health departments must prioritize politico-administrative policies to minimize the effects of social inequality and improve the standards of living, hygiene, and education of the population in order to reduce the incidence of leprosy.
Resumo:
OBJECTIVE Identify spatial distribution patterns of the proportion of nonadherence to tuberculosis treatment and its associated factors.METHODS We conducted an ecological study based on secondary and primary data from municipalities of the metropolitan area of Buenos Aires, Argentina. An exploratory analysis of the characteristics of the area and the distributions of the cases included in the sample (proportion of nonadherence) was also carried out along with a multifactor analysis by linear regression. The variables related to the characteristics of the population, residences and families were analyzed.RESULTS Areas with higher proportion of the population without social security benefits (p = 0.007) and of households with unsatisfied basic needs had a higher risk of nonadherence (p = 0.032). In addition, the proportion of nonadherence was higher in areas with the highest proportion of households with no public transportation within 300 meters (p = 0.070).CONCLUSIONS We found a risk area for the nonadherence to treatment characterized by a population living in poverty, with precarious jobs and difficult access to public transportation.
Resumo:
ABSTRACT OBJECTIVE To describe the spatial distribution of avoidable hospitalizations due to tuberculosis in the municipality of Ribeirao Preto, SP, Brazil, and to identify spatial and space-time clusters for the risk of occurrence of these events. METHODS This is a descriptive, ecological study that considered the hospitalizations records of the Hospital Information System of residents of Ribeirao Preto, SP, Southeastern Brazil, from 2006 to 2012. Only the cases with recorded addresses were considered for the spatial analyses, and they were also geocoded. We resorted to Kernel density estimation to identify the densest areas, local empirical Bayes rate as the method for smoothing the incidence rates of hospital admissions, and scan statistic for identifying clusters of risk. Softwares ArcGis 10.2, TerraView 4.2.2, and SaTScanTM were used in the analysis. RESULTS We identified 169 hospitalizations due to tuberculosis. Most were of men (n = 134; 79.2%), averagely aged 48 years (SD = 16.2). The predominant clinical form was the pulmonary one, which was confirmed through a microscopic examination of expectorated sputum (n = 66; 39.0%). We geocoded 159 cases (94.0%). We observed a non-random spatial distribution of avoidable hospitalizations due to tuberculosis concentrated in the northern and western regions of the municipality. Through the scan statistic, three spatial clusters for risk of hospitalizations due to tuberculosis were identified, one of them in the northern region of the municipality (relative risk [RR] = 3.4; 95%CI 2.7–4,4); the second in the central region, where there is a prison unit (RR = 28.6; 95%CI 22.4–36.6); and the last one in the southern region, and area of protection for hospitalizations (RR = 0.2; 95%CI 0.2–0.3). We did not identify any space-time clusters. CONCLUSIONS The investigation showed priority areas for the control and surveillance of tuberculosis, as well as the profile of the affected population, which shows important aspects to be considered in terms of management and organization of health care services targeting effectiveness in primary health care.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
The main objective of this survey was to perform descriptive analysis of crime evolution in Portugal between 1995 and 2013. The main focus of this survey was to analyse spatial crime evolution patterns in Portuguese NUTS III regions. Most important crime types have been included into analysis. The main idea was to uncover relation between local patterns and global crime evolution; to define regions which have contributed to global crime evolution of some specific crime types and to define how they have contributed. There were many statistical reports and scientific papers which have analysed some particular crime types, but one global spatial-temporal analysis has not been found. Principal Component Analysis and multidimensional descriptive data analysis technique STATIS have been the base of the analysis. The results of this survey has shown that strong spatial and temporal crime patterns exist. It was possible to describe global crime evolution patterns and to define crime evolution patterns in NUTS III regions. It was possible to define three to four groups of crimes where each group shows similar spatial crime dynamics.
Resumo:
INTRODUCTION: Leprosy in Brazil is a public health issue, and there are many regions in the State of Espírito Santo with high endemic incidence levels of leprosy, characterizing this state as a priority for leprosy programs. The aim of this study was to determine the spatial distribution of coefficients of new cases of leprosy in the State of Espírito Santo, Brazil. METHODS: We conducted a descriptive and ecologic study based on the spatial distribution of leprosy in the State of Espírito Santo between 2004 and 2009. Data were gathered from the available records of the Espírito Santo State Health Secretary. The global and local Bayesian empirical methods were used to produce an estimate of leprosy risk, smoothing the fluctuation effects of the detection coefficients. RESULTS: The study resulted in a coefficient adjustment of new cases in 10 towns that changed their classification, among which, 2 went from low to medium, 4 from medium to high, 3 from high to very high, and 1 from very high to hyper-endemic. An average variation of 1.02, fluctuating between 0 and 12.39 cases/100,000 inhabitants, was found in a comparative calculation between the Local Ebest value and the average coefficient of new leprosy cases in the State of Espírito Santo. CONCLUSIONS: The spatial analysis of leprosy favors the establishment of control strategies with a better cost-benefit relationship since it reveals specific and priority regions, thereby enabling the development of actions that can interfere in the transmission chain.
Resumo:
INTRODUCTION: Visceral leishmaniasis (VL) is a zoonosis of great importance to public health and is considered a neglected disease by the World Health Organization. The disease has expanded and become more prevalent in urban areas in Brazil. METHODS: Geospatial analyses were performed and thematic maps of the triad of the disease were produced for the study period (2003-2012) in the urban area of the municipality of Rondonópolis in the midwestern State of Mato Grosso (MT), Brazil, TerraView 4.2.2 software was used for the analyses. RESULTS: A total of 87.9% of the 186 confirmed human cases of VL were cured. Children between the ages of 1 and 4 were the most affected. Registered deaths were predominant among adults aged 60 years or older. The urban area of the municipality consists of eight strata and 12 census districts include 237 neighborhoods. All sectors had confirmed cases of VL. During the study period, human cases of the disease were recorded in 90 neighborhoods. The 23 deaths from the disease were distributed in 21 neighborhoods. Sandflies carrying the parasite were captured in 192 out of 200 neighborhoods evaluated for the presence of the VL vector. The presence of dogs carrying the parasite was confirmed in, 140 out of 154 surveyed neighborhoods. CONCLUSIONS: The data demonstrated the endemic nature of VL, with a high percentage of infected children, a high distribution of canine infection, and a wide adaptation and dispersal of the vectors in the urban environment. These results, illustrate the process of urbanization of VL in the municipality of Rondonópolis, MT, Brazil.
Resumo:
The aim of this study was to describe spatial patterns of the distribution of leprosy and to investigate spatial clustering of incidence rates in the state of Ceará, Northeast Brazil. The average incidence rate of leprosy for the period of 1991 to 1999 was calculated for each municipality of Ceará. Maps were used to describe the spatial distribution of the disease, and spatial statistics were applied to explore large- and small-scale variations of incidence rates. Three regions were identified in which the incidence of leprosy was particularly high. A spatial gradient in the incidence rates was identified, with a tendency of high rates to be concentrated on the North-South axis in the middle region of the state. Moran's I statistic indicated that a significant spatial autocorrelation also existed. The spatial distribution of leprosy in Ceará is heterogeneous. The reasons for spatial clustering of disease rates are not known, but might be related to an heterogeneous distribution of other factors such as crowding, social inequality, and environmental characteristics which by themselves determine the transmission of Mycobacterium leprae.
Resumo:
A version of Matheron’s discrete Gaussian model is applied to cell composition data.The examples are for map patterns of felsic metavolcanics in two different areas. Q-Qplots of the model for cell values representing proportion of 10 km x 10 km cell areaunderlain by this rock type are approximately linear, and the line of best fit can be usedto estimate the parameters of the model. It is also shown that felsic metavolcanics in theAbitibi area of the Canadian Shield can be modeled as a fractal
Resumo:
Previously published scientific papers have reported a negative correlation between drinking water hardness and cardiovascular mortality. Some ecologic and case-control studies suggest the protective effect of calcium and magnesium concentration in drinking water. In this article we present an analysis of this protective relationship in 538 municipalities of Comunidad Valenciana (Spain) from 1991-1998. We used the Spanish version of the Rapid Inquiry Facility (RIF) developed under the European Environment and Health Information System (EUROHEIS) research project. The strategy of analysis used in our study conforms to the exploratory nature of the RIF that is used as a tool to obtain quick and flexible insight into epidemiologic surveillance problems. This article describes the use of the RIF to explore possible associations between disease indicators and environmental factors. We used exposure analysis to assess the effect of both protective factors--calcium and magnesium--on mortality from cerebrovascular (ICD-9 430-438) and ischemic heart (ICD-9 410-414) diseases. This study provides statistical evidence of the relationship between mortality from cardiovascular diseases and hardness of drinking water. This relationship is stronger in cerebrovascular disease than in ischemic heart disease, is more pronounced for women than for men, and is more apparent with magnesium than with calcium concentration levels. Nevertheless, the protective nature of these two factors is not clearly established. Our results suggest the possibility of protectiveness but cannot be claimed as conclusive. The weak effects of these covariates make it difficult to separate them from the influence of socioeconomic and environmental factors. We have also performed disease mapping of standardized mortality ratios to detect clusters of municipalities with high risk. Further standardization by levels of calcium and magnesium in drinking water shows changes in the maps when we remove the effect of these covariates.
Resumo:
The development of statistical models for forensic fingerprint identification purposes has been the subject of increasing research attention in recent years. This can be partly seen as a response to a number of commentators who claim that the scientific basis for fingerprint identification has not been adequately demonstrated. In addition, key forensic identification bodies such as ENFSI [1] and IAI [2] have recently endorsed and acknowledged the potential benefits of using statistical models as an important tool in support of the fingerprint identification process within the ACE-V framework. In this paper, we introduce a new Likelihood Ratio (LR) model based on Support Vector Machines (SVMs) trained with features discovered via morphometric and spatial analyses of corresponding minutiae configurations for both match and close non-match populations often found in AFIS candidate lists. Computed LR values are derived from a probabilistic framework based on SVMs that discover the intrinsic spatial differences of match and close non-match populations. Lastly, experimentation performed on a set of over 120,000 publicly available fingerprint images (mostly sourced from the National Institute of Standards and Technology (NIST) datasets) and a distortion set of approximately 40,000 images, is presented, illustrating that the proposed LR model is reliably guiding towards the right proposition in the identification assessment of match and close non-match populations. Results further indicate that the proposed model is a promising tool for fingerprint practitioners to use for analysing the spatial consistency of corresponding minutiae configurations.
Resumo:
The modeling and estimation of the parameters that define the spatial dependence structure of a regionalized variable by geostatistical methods are fundamental, since these parameters, underlying the kriging of unsampled points, allow the construction of thematic maps. One or more atypical observations in the sample data can affect the estimation of these parameters. Thus, the assessment of the combined influence of these observations by the analysis of Local Influence is essential. The purpose of this paper was to propose local influence analysis methods for the regionalized variable, given that it has n-variate Student's t-distribution, and compare it with the analysis of local influence when the same regionalized variable has n-variate normal distribution. These local influence analysis methods were applied to soil physical properties and soybean yield data of an experiment carried out in a 56.68 ha commercial field in western Paraná, Brazil. Results showed that influential values are efficiently determined with n-variate Student's t-distribution.
Resumo:
Red blood cell (RBC) membrane fluctuations provide important insights into cell states. We present a spatial analysis of red blood cell membrane fluctuations by using digital holographic microscopy (DHM). This interferometric and dye-free technique, possessing nanometric axial and microsecond temporal sensitivities enables to measure cell membrane fluctuations (CMF) on the whole cell surface. DHM acquisition is combined with a model which allows extracting the membrane fluctuation amplitude, while taking into account cell membrane topology. Uneven distribution of CMF amplitudes over the RBC surface is observed, showing maximal values in a ring corresponding to the highest points on the RBC torus as well as in some scattered areas in the inner region of the RBC. CMF amplitudes of 35.9+/-8.9 nm and 4.7+/-0.5 nm (averaged over the cell surface) were determined for normal and ethanol-fixed RBCs, respectively.