815 resultados para Sparse representation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to detect unusual events in surviellance footage as they happen is a highly desireable feature for a surveillance system. However, this problem remains challenging in crowded scenes due to occlusions and the clustering of people. In this paper, we propose using the Distributed Behavior Model (DBM), which has been widely used in computer graphics, for video event detection. Our approach does not rely on object tracking, and is robust to camera movements. We use sparse coding for classification, and test our approach on various datasets. Our proposed approach outperforms a state-of-the-art work which uses the social force model and Latent Dirichlet Allocation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract. In recent years, sparse representation based classification(SRC) has received much attention in face recognition with multipletraining samples of each subject. However, it cannot be easily applied toa recognition task with insufficient training samples under uncontrolledenvironments. On the other hand, cohort normalization, as a way of mea-suring the degradation effect under challenging environments in relationto a pool of cohort samples, has been widely used in the area of biometricauthentication. In this paper, for the first time, we introduce cohort nor-malization to SRC-based face recognition with insufficient training sam-ples. Specifically, a user-specific cohort set is selected to normalize theraw residual, which is obtained from comparing the test sample with itssparse representations corresponding to the gallery subject, using poly-nomial regression. Experimental results on AR and FERET databases show that cohort normalization can bring SRC much robustness against various forms of degradation factors for undersampled face recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of human detection is challenging, more so, when faced with adverse conditions such as occlusion and background clutter. This paper addresses the problem of human detection by representing an extracted feature of an image using a sparse linear combination of chosen dictionary atoms. The detection along with the scale finding, is done by using the coefficients obtained from sparse representation. This is of particular interest as we address the problem of scale using a scale-embedded dictionary where the conventional methods detect the object by running the detection window at all scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-time object tracking is a critical task in many computer vision applications. Achieving rapid and robust tracking while handling changes in object pose and size, varying illumination and partial occlusion, is a challenging task given the limited amount of computational resources. In this paper we propose a real-time object tracker in l(1) framework addressing these issues. In the proposed approach, dictionaries containing templates of overlapping object fragments are created. The candidate fragments are sparsely represented in the dictionary fragment space by solving the l(1) regularized least squares problem. The non zero coefficients indicate the relative motion between the target and candidate fragments along with a fidelity measure. The final object motion is obtained by fusing the reliable motion information. The dictionary is updated based on the object likelihood map. The proposed tracking algorithm is tested on various challenging videos and found to outperform earlier approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a strong relation between sparse signal recovery and error control coding. It is known that burst errors are block sparse in nature. So, here we attempt to solve burst error correction problem using block sparse signal recovery methods. We construct partial Fourier based encoding and decoding matrices using results on difference sets. These constructions offer guaranteed and efficient error correction when used in conjunction with reconstruction algorithms which exploit block sparsity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sparse representation based classification (SRC) is one of the most successful methods that has been developed in recent times for face recognition. Optimal projection for Sparse representation based classification (OPSRC)1] provides a dimensionality reduction map that is supposed to give optimum performance for SRC framework. However, the computational complexity involved in this method is too high. Here, we propose a new projection technique using the data scatter matrix which is computationally superior to the optimal projection method with comparable classification accuracy with respect OPSRC. The performance of the proposed approach is benchmarked with various publicly available face database.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acoustic rangerfinders are a promising technology for accurate proximity detection, a critical requirement for many emerging mobile computing applications. While state-of-the-art systems deliver robust ranging performance, the computational intensiveness of their detection mechanism expedites the energy depletion of the associated devices that are typically powered by batteries. The contribution of this article is fourfold. First, it outlines the common factors that are important for ranging. Second, it presents a review of acoustic rangers and identifies their potential problems. Third, it explores the design of an information processing framework based on sparse representation that could potentially address existing challenges, especially for mobile devices. Finally, it presents mu-BeepBeep: a low energy acoustic ranging service for mobile devices, and empirically evaluates its benefits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual tracking is an important task in various computer vision applications including visual surveillance, human computer interaction, event detection, video indexing and retrieval. Recent state of the art sparse representation (SR) based trackers show better robustness than many of the other existing trackers. One of the issues with these SR trackers is low execution speed. The particle filter framework is one of the major aspects responsible for slow execution, and is common to most of the existing SR trackers. In this paper,(1) we propose a robust interest point based tracker in l(1) minimization framework that runs at real-time with performance comparable to the state of the art trackers. In the proposed tracker, the target dictionary is obtained from the patches around target interest points. Next, the interest points from the candidate window of the current frame are obtained. The correspondence between target and candidate points is obtained via solving the proposed l(1) minimization problem. In order to prune the noisy matches, a robust matching criterion is proposed, where only the reliable candidate points that mutually match with target and candidate dictionary elements are considered for tracking. The object is localized by measuring the displacement of these interest points. The reliable candidate patches are used for updating the target dictionary. The performance and accuracy of the proposed tracker is benchmarked with several complex video sequences. The tracker is found to be considerably fast as compared to the reported state of the art trackers. The proposed tracker is further evaluated for various local patch sizes, number of interest points and regularization parameters. The performance of the tracker for various challenges including illumination change, occlusion, and background clutter has been quantified with a benchmark dataset containing 50 videos. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In big data image/video analytics, we encounter the problem of learning an over-complete dictionary for sparse representation from a large training dataset, which cannot be processed at once because of storage and computational constraints. To tackle the problem of dictionary learning in such scenarios, we propose an algorithm that exploits the inherent clustered structure of the training data and make use of a divide-and-conquer approach. The fundamental idea behind the algorithm is to partition the training dataset into smaller clusters, and learn local dictionaries for each cluster. Subsequently, the local dictionaries are merged to form a global dictionary. Merging is done by solving another dictionary learning problem on the atoms of the locally trained dictionaries. This algorithm is referred to as the split-and-merge algorithm. We show that the proposed algorithm is efficient in its usage of memory and computational complexity, and performs on par with the standard learning strategy, which operates on the entire data at a time. As an application, we consider the problem of image denoising. We present a comparative analysis of our algorithm with the standard learning techniques that use the entire database at a time, in terms of training and denoising performance. We observe that the split-and-merge algorithm results in a remarkable reduction of training time, without significantly affecting the denoising performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we have proposed an anomaly detection algorithm based on Histogram of Oriented Motion Vectors (HOMV) 1] in sparse representation framework. Usual behavior is learned at each location by sparsely representing the HOMVs over learnt normal feature bases obtained using an online dictionary learning algorithm. In the end, anomaly is detected based on the likelihood of the occurrence of sparse coefficients at that location. The proposed approach is found to be robust compared to existing methods as demonstrated in the experiments on UCSD Ped1 and UCSD Ped2 datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human detection is a complex problem owing to the variable pose that they can adopt. Here, we address this problem in sparse representation framework with an overcomplete scale-embedded dictionary. Histogram of oriented gradient features extracted from the candidate image patches are sparsely represented by the dictionary that contain positive bases along with negative and trivial bases. The object is detected based on the proposed likelihood measure obtained from the distribution of these sparse coefficients. The likelihood is obtained as the ratio of contribution of positive bases to negative and trivial bases. The positive bases of the dictionary represent the object (human) at various scales. This enables us to detect the object at any scale in one shot and avoids multiple scanning at different scales. This significantly reduces the computational complexity of detection task. In addition to human detection, it also finds the scale at which the human is detected due to the scale-embedded structure of the dictionary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Handling appearance variations is a very challenging problem for visual tracking. Existing methods usually solve this problem by relying on an effective appearance model with two features: (1) being capable of discriminating the tracked target from its background, (2) being robust to the target's appearance variations during tracking. Instead of integrating the two requirements into the appearance model, in this paper, we propose a tracking method that deals with these problems separately based on sparse representation in a particle filter framework. Each target candidate defined by a particle is linearly represented by the target and background templates with an additive representation error. Discriminating the target from its background is achieved by activating the target templates or the background templates in the linear system in a competitive manner. The target's appearance variations are directly modeled as the representation error. An online algorithm is used to learn the basis functions that sparsely span the representation error. The linear system is solved via ℓ1 minimization. The candidate with the smallest reconstruction error using the target templates is selected as the tracking result. We test the proposed approach using four sequences with heavy occlusions, large pose variations, drastic illumination changes and low foreground-background contrast. The proposed approach shows excellent performance in comparison with two latest state-of-the-art trackers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A practical machine-vision-based system is developed for fast detection of defects occurring on the surface of bottle caps. This system can be used to extract the circular region as the region of interests (ROI) from the surface of a bottle cap, and then use the circular region projection histogram (CRPH) as the matching features. We establish two dictionaries for the template and possible defect, respectively. Due to the requirements of high-speed production as well as detecting quality, a fast algorithm based on a sparse representation is proposed to speed up the searching. In the sparse representation, non-zero elements in the sparse factors indicate the defect's size and position. Experimental results in industrial trials show that the proposed method outperforms the orientation code method (OCM) and is able to produce promising results for detecting defects on the surface of bottle caps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a solution to the problem of action and gesture recognition using sparse representations. The dictionary is modelled as a simple concatenation of features computed for each action or gesture class from the training data, and test data is classified by finding sparse representation of the test video features over this dictionary. Our method does not impose any explicit training procedure on the dictionary. We experiment our model with two kinds of features, by projecting (i) Gait Energy Images (GEIs) and (ii) Motion-descriptors, to a lower dimension using Random projection. Experiments have shown 100% recognition rate on standard datasets and are compared to the results obtained with widely used SVM classifier.